HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polidi Structured version   Visualization version   GIF version

Theorem polidi 28355
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 28281. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
polid.1 𝐴 ∈ ℋ
polid.2 𝐵 ∈ ℋ
Assertion
Ref Expression
polidi (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4)

Proof of Theorem polidi
StepHypRef Expression
1 polid.1 . . 3 𝐴 ∈ ℋ
2 polid.2 . . 3 𝐵 ∈ ℋ
31, 2, 2, 1polid2i 28354 . 2 (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))) / 4)
41, 2hvaddcli 28215 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
54normsqi 28329 . . . . 5 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
61, 2hvsubcli 28218 . . . . . 6 (𝐴 𝐵) ∈ ℋ
76normsqi 28329 . . . . 5 ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵))
85, 7oveq12i 6805 . . . 4 (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵)))
9 ax-icn 10197 . . . . . . . . 9 i ∈ ℂ
109, 2hvmulcli 28211 . . . . . . . 8 (i · 𝐵) ∈ ℋ
111, 10hvaddcli 28215 . . . . . . 7 (𝐴 + (i · 𝐵)) ∈ ℋ
1211normsqi 28329 . . . . . 6 ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵)))
131, 10hvsubcli 28218 . . . . . . 7 (𝐴 (i · 𝐵)) ∈ ℋ
1413normsqi 28329 . . . . . 6 ((norm‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))
1512, 14oveq12i 6805 . . . . 5 (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵))))
1615oveq2i 6804 . . . 4 (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))
178, 16oveq12i 6805 . . 3 ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵))))))
1817oveq1i 6803 . 2 (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝐴 + (i · 𝐵))) − ((𝐴 (i · 𝐵)) ·ih (𝐴 (i · 𝐵)))))) / 4)
193, 18eqtr4i 2796 1 (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  ici 10140   + caddc 10141   · cmul 10143  cmin 10468   / cdiv 10886  2c2 11272  4c4 11274  cexp 13067  chil 28116   + cva 28117   · csm 28118   ·ih csp 28119  normcno 28120   cmv 28122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-hfvadd 28197  ax-hv0cl 28200  ax-hfvmul 28202  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his2 28280  ax-his3 28281  ax-his4 28282
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-hnorm 28165  df-hvsub 28168
This theorem is referenced by:  polid  28356
  Copyright terms: Public domain W3C validator