![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > polidi | Structured version Visualization version GIF version |
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 28281. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polid.1 | ⊢ 𝐴 ∈ ℋ |
polid.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
polidi | ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid.1 | . . 3 ⊢ 𝐴 ∈ ℋ | |
2 | polid.2 | . . 3 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2, 2, 1 | polid2i 28354 | . 2 ⊢ (𝐴 ·ih 𝐵) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) |
4 | 1, 2 | hvaddcli 28215 | . . . . . 6 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
5 | 4 | normsqi 28329 | . . . . 5 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
6 | 1, 2 | hvsubcli 28218 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ |
7 | 6 | normsqi 28329 | . . . . 5 ⊢ ((normℎ‘(𝐴 −ℎ 𝐵))↑2) = ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) |
8 | 5, 7 | oveq12i 6805 | . . . 4 ⊢ (((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) = (((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) |
9 | ax-icn 10197 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
10 | 9, 2 | hvmulcli 28211 | . . . . . . . 8 ⊢ (i ·ℎ 𝐵) ∈ ℋ |
11 | 1, 10 | hvaddcli 28215 | . . . . . . 7 ⊢ (𝐴 +ℎ (i ·ℎ 𝐵)) ∈ ℋ |
12 | 11 | normsqi 28329 | . . . . . 6 ⊢ ((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) |
13 | 1, 10 | hvsubcli 28218 | . . . . . . 7 ⊢ (𝐴 −ℎ (i ·ℎ 𝐵)) ∈ ℋ |
14 | 13 | normsqi 28329 | . . . . . 6 ⊢ ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))) |
15 | 12, 14 | oveq12i 6805 | . . . . 5 ⊢ (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)) = (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))) |
16 | 15 | oveq2i 6804 | . . . 4 ⊢ (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2))) = (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))))) |
17 | 8, 16 | oveq12i 6805 | . . 3 ⊢ ((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) = ((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) |
18 | 17 | oveq1i 6803 | . 2 ⊢ (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) |
19 | 3, 18 | eqtr4i 2796 | 1 ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 ici 10140 + caddc 10141 · cmul 10143 − cmin 10468 / cdiv 10886 2c2 11272 4c4 11274 ↑cexp 13067 ℋchil 28116 +ℎ cva 28117 ·ℎ csm 28118 ·ih csp 28119 normℎcno 28120 −ℎ cmv 28122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-hfvadd 28197 ax-hv0cl 28200 ax-hfvmul 28202 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 ax-his4 28282 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-hnorm 28165 df-hvsub 28168 |
This theorem is referenced by: polid 28356 |
Copyright terms: Public domain | W3C validator |