MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poleloe Structured version   Visualization version   GIF version

Theorem poleloe 5685
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))

Proof of Theorem poleloe
StepHypRef Expression
1 brun 4855 . 2 (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 I 𝐵))
2 ideqg 5429 . . 3 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
32orbi2d 740 . 2 (𝐵𝑉 → ((𝐴𝑅𝐵𝐴 I 𝐵) ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
41, 3syl5bb 272 1 (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382   = wceq 1632  wcel 2139  cun 3713   class class class wbr 4804   I cid 5173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273
This theorem is referenced by:  poltletr  5686  somin1  5687
  Copyright terms: Public domain W3C validator