![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polcon3N | Structured version Visualization version GIF version |
Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polcon3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
2 | iinss1 4668 | . . 3 ⊢ (𝑋 ⊆ 𝑌 → ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) | |
3 | sslin 3987 | . . 3 ⊢ (∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
5 | eqid 2771 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 2polss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | eqid 2771 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
8 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
9 | 5, 6, 7, 8 | polvalN 35714 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
10 | 9 | 3adant3 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
11 | simp1 1130 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
12 | simp2 1131 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝐴) | |
13 | 1, 12 | sstrd 3762 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝐴) |
14 | 5, 6, 7, 8 | polvalN 35714 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
15 | 11, 13, 14 | syl2anc 573 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
16 | 4, 10, 15 | 3sstr4d 3797 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ⊆ wss 3723 ∩ ciin 4656 ‘cfv 6030 occoc 16157 Atomscatm 35072 HLchlt 35159 pmapcpmap 35306 ⊥𝑃cpolN 35711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-polarityN 35712 |
This theorem is referenced by: 2polcon4bN 35727 polcon2N 35728 paddunN 35736 |
Copyright terms: Public domain | W3C validator |