Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Structured version   Visualization version   GIF version

Theorem pol1N 35717
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
pol1N (𝐾 ∈ HL → ( 𝐴) = ∅)

Proof of Theorem pol1N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ssid 3765 . . 3 𝐴𝐴
2 eqid 2760 . . . 4 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2760 . . . 4 (oc‘𝐾) = (oc‘𝐾)
4 polssat.a . . . 4 𝐴 = (Atoms‘𝐾)
5 eqid 2760 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
6 polssat.p . . . 4 = (⊥𝑃𝐾)
72, 3, 4, 5, 6polval2N 35713 . . 3 ((𝐾 ∈ HL ∧ 𝐴𝐴) → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
81, 7mpan2 709 . 2 (𝐾 ∈ HL → ( 𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))))
9 hlop 35170 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
10 eqid 2760 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
1110, 4atbase 35097 . . . . . . . . . 10 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
12 eqid 2760 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
13 eqid 2760 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
1410, 12, 13ople1 34999 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾))
159, 11, 14syl2an 495 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴) → 𝑝(le‘𝐾)(1.‘𝐾))
1615ralrimiva 3104 . . . . . . . 8 (𝐾 ∈ HL → ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
17 rabid2 3257 . . . . . . . 8 (𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝𝐴 𝑝(le‘𝐾)(1.‘𝐾))
1816, 17sylibr 224 . . . . . . 7 (𝐾 ∈ HL → 𝐴 = {𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)})
1918fveq2d 6357 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}))
20 hlomcmat 35172 . . . . . . 7 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
2110, 13op1cl 34993 . . . . . . . 8 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
229, 21syl 17 . . . . . . 7 (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾))
2310, 12, 2, 4atlatmstc 35127 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2420, 22, 23syl2anc 696 . . . . . 6 (𝐾 ∈ HL → ((lub‘𝐾)‘{𝑝𝐴𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾))
2519, 24eqtr2d 2795 . . . . 5 (𝐾 ∈ HL → (1.‘𝐾) = ((lub‘𝐾)‘𝐴))
2625fveq2d 6357 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))
27 eqid 2760 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
2827, 13, 3opoc1 35010 . . . . 5 (𝐾 ∈ OP → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
299, 28syl 17 . . . 4 (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾))
3026, 29eqtr3d 2796 . . 3 (𝐾 ∈ HL → ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾))
3130fveq2d 6357 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾)))
32 hlatl 35168 . . 3 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3327, 5pmap0 35572 . . 3 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3432, 33syl 17 . 2 (𝐾 ∈ HL → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
358, 31, 343eqtrd 2798 1 (𝐾 ∈ HL → ( 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  wral 3050  {crab 3054  wss 3715  c0 4058   class class class wbr 4804  cfv 6049  Basecbs 16079  lecple 16170  occoc 16171  lubclub 17163  0.cp0 17258  1.cp1 17259  CLatccla 17328  OPcops 34980  OMLcoml 34983  Atomscatm 35071  AtLatcal 35072  HLchlt 35158  pmapcpmap 35304  𝑃cpolN 35709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-undef 7569  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-pmap 35311  df-polarityN 35710
This theorem is referenced by:  2pol0N  35718  1psubclN  35751
  Copyright terms: Public domain W3C validator