![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pol1N | Structured version Visualization version GIF version |
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
pol1N | ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3765 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqid 2760 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2760 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
4 | polssat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | eqid 2760 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
6 | polssat.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
7 | 2, 3, 4, 5, 6 | polval2N 35713 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝐴 ⊆ 𝐴) → ( ⊥ ‘𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
8 | 1, 7 | mpan2 709 | . 2 ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴)))) |
9 | hlop 35170 | . . . . . . . . . 10 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | eqid 2760 | . . . . . . . . . . 11 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 4 | atbase 35097 | . . . . . . . . . 10 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
12 | eqid 2760 | . . . . . . . . . . 11 ⊢ (le‘𝐾) = (le‘𝐾) | |
13 | eqid 2760 | . . . . . . . . . . 11 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
14 | 10, 12, 13 | ople1 34999 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 𝑝(le‘𝐾)(1.‘𝐾)) |
15 | 9, 11, 14 | syl2an 495 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴) → 𝑝(le‘𝐾)(1.‘𝐾)) |
16 | 15 | ralrimiva 3104 | . . . . . . . 8 ⊢ (𝐾 ∈ HL → ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) |
17 | rabid2 3257 | . . . . . . . 8 ⊢ (𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)} ↔ ∀𝑝 ∈ 𝐴 𝑝(le‘𝐾)(1.‘𝐾)) | |
18 | 16, 17 | sylibr 224 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐴 = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) |
19 | 18 | fveq2d 6357 | . . . . . 6 ⊢ (𝐾 ∈ HL → ((lub‘𝐾)‘𝐴) = ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)})) |
20 | hlomcmat 35172 | . . . . . . 7 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
21 | 10, 13 | op1cl 34993 | . . . . . . . 8 ⊢ (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾)) |
22 | 9, 21 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾)) |
23 | 10, 12, 2, 4 | atlatmstc 35127 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
24 | 20, 22, 23 | syl2anc 696 | . . . . . 6 ⊢ (𝐾 ∈ HL → ((lub‘𝐾)‘{𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)(1.‘𝐾)}) = (1.‘𝐾)) |
25 | 19, 24 | eqtr2d 2795 | . . . . 5 ⊢ (𝐾 ∈ HL → (1.‘𝐾) = ((lub‘𝐾)‘𝐴)) |
26 | 25 | fveq2d 6357 | . . . 4 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = ((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) |
27 | eqid 2760 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
28 | 27, 13, 3 | opoc1 35010 | . . . . 5 ⊢ (𝐾 ∈ OP → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
29 | 9, 28 | syl 17 | . . . 4 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘(1.‘𝐾)) = (0.‘𝐾)) |
30 | 26, 29 | eqtr3d 2796 | . . 3 ⊢ (𝐾 ∈ HL → ((oc‘𝐾)‘((lub‘𝐾)‘𝐴)) = (0.‘𝐾)) |
31 | 30 | fveq2d 6357 | . 2 ⊢ (𝐾 ∈ HL → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝐴))) = ((pmap‘𝐾)‘(0.‘𝐾))) |
32 | hlatl 35168 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
33 | 27, 5 | pmap0 35572 | . . 3 ⊢ (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
34 | 32, 33 | syl 17 | . 2 ⊢ (𝐾 ∈ HL → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅) |
35 | 8, 31, 34 | 3eqtrd 2798 | 1 ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 Basecbs 16079 lecple 16170 occoc 16171 lubclub 17163 0.cp0 17258 1.cp1 17259 CLatccla 17328 OPcops 34980 OMLcoml 34983 Atomscatm 35071 AtLatcal 35072 HLchlt 35158 pmapcpmap 35304 ⊥𝑃cpolN 35709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-riotaBAD 34760 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-undef 7569 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-pmap 35311 df-polarityN 35710 |
This theorem is referenced by: 2pol0N 35718 1psubclN 35751 |
Copyright terms: Public domain | W3C validator |