Step | Hyp | Ref
| Expression |
1 | | poimir.0 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑁 ∈ ℕ) |
3 | | oveq1 6697 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) = (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘}))) |
4 | 3 | fveq2d 6233 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))) = (𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))) |
5 | 4 | fveq1d 6231 |
. . . . . . . . . . . 12
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏)) |
6 | 5 | breq2d 4697 |
. . . . . . . . . . 11
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏))) |
7 | | fveq1 6228 |
. . . . . . . . . . . 12
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝‘𝑏) = (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏)) |
8 | 7 | neeq1d 2882 |
. . . . . . . . . . 11
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝‘𝑏) ≠ 0 ↔ (((1st
‘𝑠)
∘𝑓 + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
9 | 6, 8 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ((0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
10 | 9 | ralbidv 3015 |
. . . . . . . . 9
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
11 | 10 | rabbidv 3220 |
. . . . . . . 8
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
12 | 11 | uneq2d 3800 |
. . . . . . 7
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
13 | 12 | supeq1d 8393 |
. . . . . 6
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
14 | 1 | nnnn0d 11389 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
15 | | 0elfz 12475 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
16 | 14, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
17 | 16 | snssd 4372 |
. . . . . . . . 9
⊢ (𝜑 → {0} ⊆ (0...𝑁)) |
18 | | ssrab2 3720 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ (1...𝑁) |
19 | | fz1ssfz0 12474 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
20 | 18, 19 | sstri 3645 |
. . . . . . . . . 10
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ (0...𝑁) |
21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ (0...𝑁)) |
22 | 17, 21 | unssd 3822 |
. . . . . . . 8
⊢ (𝜑 → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ (0...𝑁)) |
23 | | ltso 10156 |
. . . . . . . . 9
⊢ < Or
ℝ |
24 | | snfi 8079 |
. . . . . . . . . . 11
⊢ {0}
∈ Fin |
25 | | fzfi 12811 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ∈
Fin |
26 | | rabfi 8226 |
. . . . . . . . . . . 12
⊢
((1...𝑁) ∈ Fin
→ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ∈ Fin) |
27 | 25, 26 | ax-mp 5 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ∈ Fin |
28 | | unfi 8268 |
. . . . . . . . . . 11
⊢ (({0}
∈ Fin ∧ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ∈ Fin) → ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin) |
29 | 24, 27, 28 | mp2an 708 |
. . . . . . . . . 10
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin |
30 | | c0ex 10072 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
31 | 30 | snid 4241 |
. . . . . . . . . . 11
⊢ 0 ∈
{0} |
32 | | elun1 3813 |
. . . . . . . . . . 11
⊢ (0 ∈
{0} → 0 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
33 | | ne0i 3954 |
. . . . . . . . . . 11
⊢ (0 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅) |
34 | 31, 32, 33 | mp2b 10 |
. . . . . . . . . 10
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ |
35 | | 0red 10079 |
. . . . . . . . . . . . 13
⊢ ((𝜑 → 𝑁 ∈ ℕ) → 0 ∈
ℝ) |
36 | 35 | snssd 4372 |
. . . . . . . . . . . 12
⊢ ((𝜑 → 𝑁 ∈ ℕ) → {0} ⊆
ℝ) |
37 | 1, 36 | ax-mp 5 |
. . . . . . . . . . 11
⊢ {0}
⊆ ℝ |
38 | | elfzelz 12380 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ) |
39 | 38 | ssriv 3640 |
. . . . . . . . . . . . 13
⊢
(1...𝑁) ⊆
ℤ |
40 | | zssre 11422 |
. . . . . . . . . . . . 13
⊢ ℤ
⊆ ℝ |
41 | 39, 40 | sstri 3645 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
ℝ |
42 | 18, 41 | sstri 3645 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ ℝ |
43 | 37, 42 | unssi 3821 |
. . . . . . . . . 10
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ |
44 | 29, 34, 43 | 3pm3.2i 1259 |
. . . . . . . . 9
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ) |
45 | | fisupcl 8416 |
. . . . . . . . 9
⊢ (( <
Or ℝ ∧ (({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ)) → sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
46 | 23, 44, 45 | mp2an 708 |
. . . . . . . 8
⊢ sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) |
47 | | ssel 3630 |
. . . . . . . 8
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ (0...𝑁) → (sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
(0...𝑁))) |
48 | 22, 46, 47 | mpisyl 21 |
. . . . . . 7
⊢ (𝜑 → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
(0...𝑁)) |
49 | 48 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑝:(1...𝑁)⟶(0...𝑘)) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
(0...𝑁)) |
50 | | elfznn 12408 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ) |
51 | | nngt0 11087 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 0 <
𝑛) |
52 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → 0 < 𝑛) |
53 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((0 ≤
((𝐹‘(𝑝 ∘𝑓 /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → (𝑝‘𝑏) ≠ 0) |
54 | 53 | ralimi 2981 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
(1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0) |
55 | | elfznn 12408 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (1...𝑁) → 𝑠 ∈ ℕ) |
56 | | nnre 11065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
57 | | nnre 11065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℝ) |
58 | | lenlt 10154 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛)) |
59 | 56, 57, 58 | syl2an 493 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛)) |
60 | | elfz1b 12447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑠) ↔ (𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠)) |
61 | 60 | biimpri 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠) → 𝑛 ∈ (1...𝑠)) |
62 | 61 | 3expia 1286 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑛 ≤ 𝑠 → 𝑛 ∈ (1...𝑠))) |
63 | 59, 62 | sylbird 250 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (¬
𝑠 < 𝑛 → 𝑛 ∈ (1...𝑠))) |
64 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = 𝑛 → (𝑝‘𝑏) = (𝑝‘𝑛)) |
65 | 64 | eqeq1d 2653 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑛 → ((𝑝‘𝑏) = 0 ↔ (𝑝‘𝑛) = 0)) |
66 | 65 | rspcev 3340 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ (1...𝑠) ∧ (𝑝‘𝑛) = 0) → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0) |
67 | 66 | expcom 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝‘𝑛) = 0 → (𝑛 ∈ (1...𝑠) → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0)) |
68 | 63, 67 | sylan9 690 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) ∧ (𝑝‘𝑛) = 0) → (¬ 𝑠 < 𝑛 → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0)) |
69 | 68 | an32s 863 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ ℕ) → (¬ 𝑠 < 𝑛 → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0)) |
70 | | nne 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝑝‘𝑏) ≠ 0 ↔ (𝑝‘𝑏) = 0) |
71 | 70 | rexbii 3070 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑏 ∈
(1...𝑠) ¬ (𝑝‘𝑏) ≠ 0 ↔ ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0) |
72 | | rexnal 3024 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑏 ∈
(1...𝑠) ¬ (𝑝‘𝑏) ≠ 0 ↔ ¬ ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0) |
73 | 71, 72 | bitr3i 266 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑏 ∈
(1...𝑠)(𝑝‘𝑏) = 0 ↔ ¬ ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0) |
74 | 69, 73 | syl6ib 241 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ ℕ) → (¬ 𝑠 < 𝑛 → ¬ ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0)) |
75 | 74 | con4d 114 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ ℕ) → (∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0 → 𝑠 < 𝑛)) |
76 | 55, 75 | sylan2 490 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ (1...𝑁)) → (∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0 → 𝑠 < 𝑛)) |
77 | 54, 76 | syl5 34 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ (1...𝑁)) → (∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛)) |
78 | 77 | ralrimiva 2995 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛)) |
79 | | ralunb 3827 |
. . . . . . . . . . . 12
⊢
(∀𝑠 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛 ↔ (∀𝑠 ∈ {0}𝑠 < 𝑛 ∧ ∀𝑠 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}𝑠 < 𝑛)) |
80 | | breq1 4688 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 0 → (𝑠 < 𝑛 ↔ 0 < 𝑛)) |
81 | 30, 80 | ralsn 4254 |
. . . . . . . . . . . . 13
⊢
(∀𝑠 ∈
{0}𝑠 < 𝑛 ↔ 0 < 𝑛) |
82 | | oveq2 6698 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑠 → (1...𝑎) = (1...𝑠)) |
83 | 82 | raleqdv 3174 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑠 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
84 | 83 | ralrab 3401 |
. . . . . . . . . . . . 13
⊢
(∀𝑠 ∈
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}𝑠 < 𝑛 ↔ ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛)) |
85 | 81, 84 | anbi12i 733 |
. . . . . . . . . . . 12
⊢
((∀𝑠 ∈
{0}𝑠 < 𝑛 ∧ ∀𝑠 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}𝑠 < 𝑛) ↔ (0 < 𝑛 ∧ ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛))) |
86 | 79, 85 | bitri 264 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛 ↔ (0 < 𝑛 ∧ ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛))) |
87 | 52, 78, 86 | sylanbrc 699 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → ∀𝑠 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛) |
88 | | breq1 4688 |
. . . . . . . . . . 11
⊢ (𝑠 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) → (𝑠 < 𝑛 ↔ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛)) |
89 | 88 | rspcva 3338 |
. . . . . . . . . 10
⊢
((sup(({0} ∪ {𝑎
∈ (1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∧ ∀𝑠 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
90 | 46, 87, 89 | sylancr 696 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
91 | 50, 90 | sylan 487 |
. . . . . . . 8
⊢ ((𝑛 ∈ (1...𝑁) ∧ (𝑝‘𝑛) = 0) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
92 | 91 | 3adant2 1100 |
. . . . . . 7
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 0) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
93 | 92 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 0)) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
94 | 38 | zred 11520 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℝ) |
95 | 94 | 3ad2ant1 1102 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) → 𝑛 ∈ ℝ) |
96 | 95 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝑛 ∈ ℝ) |
97 | | simpr1 1087 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝑛 ∈ (1...𝑁)) |
98 | | simpll 805 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝜑) |
99 | | simplr 807 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → 𝑘 ∈ ℕ) |
100 | | elfzelz 12380 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℤ) |
101 | 100 | zred 11520 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℝ) |
102 | | nndivre 11094 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
103 | 101, 102 | sylan 487 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
104 | | elfzle1 12382 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0...𝑘) → 0 ≤ 𝑖) |
105 | 101, 104 | jca 553 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0...𝑘) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) |
106 | | nnrp 11880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
107 | 106 | rpregt0d 11916 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
108 | | divge0 10930 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑖 ∈ ℝ ∧ 0 ≤
𝑖) ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → 0 ≤ (𝑖 / 𝑘)) |
109 | 105, 107,
108 | syl2an 493 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑖 / 𝑘)) |
110 | | elfzle2 12383 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0...𝑘) → 𝑖 ≤ 𝑘) |
111 | 110 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ≤ 𝑘) |
112 | 101 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ∈ ℝ) |
113 | | 1red 10093 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 1 ∈
ℝ) |
114 | 106 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
115 | 112, 113,
114 | ledivmuld 11963 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ (𝑘 · 1))) |
116 | | nncn 11066 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
117 | 116 | mulid1d 10095 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ℕ → (𝑘 · 1) = 𝑘) |
118 | 117 | breq2d 4697 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℕ → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
119 | 118 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
120 | 115, 119 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ 𝑘)) |
121 | 111, 120 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ≤ 1) |
122 | | 0re 10078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ |
123 | | 1re 10077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ |
124 | 122, 123 | elicc2i 12277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 / 𝑘) ∈ (0[,]1) ↔ ((𝑖 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝑖 / 𝑘) ∧ (𝑖 / 𝑘) ≤ 1)) |
125 | 103, 109,
121, 124 | syl3anbrc 1265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ (0[,]1)) |
126 | 125 | ancoms 468 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑘)) → (𝑖 / 𝑘) ∈ (0[,]1)) |
127 | | elsni 4227 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ {𝑘} → 𝑗 = 𝑘) |
128 | 127 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) = (𝑖 / 𝑘)) |
129 | 128 | eleq1d 2715 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ {𝑘} → ((𝑖 / 𝑗) ∈ (0[,]1) ↔ (𝑖 / 𝑘) ∈ (0[,]1))) |
130 | 126, 129 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑘)) → (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) ∈ (0[,]1))) |
131 | 130 | impr 648 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ (𝑖 ∈ (0...𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
132 | 99, 131 | sylan 487 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) ∧ (𝑖 ∈ (0...𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
133 | | simprr 811 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → 𝑝:(1...𝑁)⟶(0...𝑘)) |
134 | | vex 3234 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑘 ∈ V |
135 | 134 | fconst 6129 |
. . . . . . . . . . . . . . . . 17
⊢
((1...𝑁) ×
{𝑘}):(1...𝑁)⟶{𝑘} |
136 | 135 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘}) |
137 | | fzfid 12812 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → (1...𝑁) ∈ Fin) |
138 | | inidm 3855 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
139 | 132, 133,
136, 137, 137, 138 | off 6954 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
140 | | poimir.i |
. . . . . . . . . . . . . . . . 17
⊢ 𝐼 = ((0[,]1)
↑𝑚 (1...𝑁)) |
141 | 140 | eleq2i 2722 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∘𝑓 /
((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ ((0[,]1)
↑𝑚 (1...𝑁))) |
142 | | ovex 6718 |
. . . . . . . . . . . . . . . . 17
⊢ (0[,]1)
∈ V |
143 | | ovex 6718 |
. . . . . . . . . . . . . . . . 17
⊢
(1...𝑁) ∈
V |
144 | 142, 143 | elmap 7928 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∘𝑓 /
((1...𝑁) × {𝑘})) ∈ ((0[,]1)
↑𝑚 (1...𝑁)) ↔ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
145 | 141, 144 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∘𝑓 /
((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
146 | 139, 145 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼) |
147 | 146 | 3adantr3 1242 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼) |
148 | | 3anass 1059 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘))) |
149 | | ancom 465 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ (1...𝑁) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ↔ ((𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ∧ 𝑛 ∈ (1...𝑁))) |
150 | 148, 149 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ↔ ((𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ∧ 𝑛 ∈ (1...𝑁))) |
151 | | ffn 6083 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝:(1...𝑁)⟶(0...𝑘) → 𝑝 Fn (1...𝑁)) |
152 | 151 | ad2antrl 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝑝 Fn (1...𝑁)) |
153 | | fnconstg 6131 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ V → ((1...𝑁) × {𝑘}) Fn (1...𝑁)) |
154 | 134, 153 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((1...𝑁) × {𝑘}) Fn (1...𝑁)) |
155 | | fzfid 12812 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (1...𝑁) ∈ Fin) |
156 | | simplrr 818 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑝‘𝑛) = 𝑘) |
157 | 134 | fvconst2 6510 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘) |
158 | 157 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘) |
159 | 152, 154,
155, 155, 138, 156, 158 | ofval 6948 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = (𝑘 / 𝑘)) |
160 | 159 | anasss 680 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ ((𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ∧ 𝑛 ∈ (1...𝑁))) → ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = (𝑘 / 𝑘)) |
161 | 150, 160 | sylan2b 491 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = (𝑘 / 𝑘)) |
162 | | nnne0 11091 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
163 | 116, 162 | dividd 10837 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑘 / 𝑘) = 1) |
164 | 163 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (𝑘 / 𝑘) = 1) |
165 | 161, 164 | eqtrd 2685 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 1) |
166 | | ovex 6718 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∘𝑓 /
((1...𝑁) × {𝑘})) ∈ V |
167 | | eleq1 2718 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → (𝑧 ∈ 𝐼 ↔ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼)) |
168 | | fveq1 6228 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → (𝑧‘𝑛) = ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛)) |
169 | 168 | eqeq1d 2653 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → ((𝑧‘𝑛) = 1 ↔ ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 1)) |
170 | 167, 169 | 3anbi23d 1442 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → ((𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 1))) |
171 | 170 | anbi2d 740 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 1)))) |
172 | | fveq2 6229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → (𝐹‘𝑧) = (𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))) |
173 | 172 | fveq1d 6231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → ((𝐹‘𝑧)‘𝑛) = ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)) |
174 | 173 | breq2d 4697 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → (0 ≤ ((𝐹‘𝑧)‘𝑛) ↔ 0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))) |
175 | 171, 174 | imbi12d 333 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) ↔ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 1)) → 0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))) |
176 | | poimir.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) |
177 | 166, 175,
176 | vtocl 3290 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 1)) → 0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)) |
178 | 98, 97, 147, 165, 177 | syl13anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)) |
179 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
180 | | simp3 1083 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) → (𝑝‘𝑛) = 𝑘) |
181 | | neeq1 2885 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝‘𝑛) = 𝑘 → ((𝑝‘𝑛) ≠ 0 ↔ 𝑘 ≠ 0)) |
182 | 162, 181 | syl5ibrcom 237 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → ((𝑝‘𝑛) = 𝑘 → (𝑝‘𝑛) ≠ 0)) |
183 | 182 | imp 444 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ (𝑝‘𝑛) = 𝑘) → (𝑝‘𝑛) ≠ 0) |
184 | 179, 180,
183 | syl2an 493 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (𝑝‘𝑛) ≠ 0) |
185 | | vex 3234 |
. . . . . . . . . . . . 13
⊢ 𝑛 ∈ V |
186 | | fveq2 6229 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑛 → ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)) |
187 | 186 | breq2d 4697 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑛 → (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))) |
188 | 64 | neeq1d 2882 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑛 → ((𝑝‘𝑏) ≠ 0 ↔ (𝑝‘𝑛) ≠ 0)) |
189 | 187, 188 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑛 → ((0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑝‘𝑛) ≠ 0))) |
190 | 185, 189 | ralsn 4254 |
. . . . . . . . . . . 12
⊢
(∀𝑏 ∈
{𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑝‘𝑛) ≠ 0)) |
191 | 178, 184,
190 | sylanbrc 699 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) |
192 | 38 | zcnd 11521 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ) |
193 | | 1cnd 10094 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → 1 ∈ ℂ) |
194 | 192, 193 | subeq0ad 10440 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = 0 ↔ 𝑛 = 1)) |
195 | 194 | biimpcd 239 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) = 0 → (𝑛 ∈ (1...𝑁) → 𝑛 = 1)) |
196 | | 1z 11445 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℤ |
197 | | fzsn 12421 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
ℤ → (1...1) = {1}) |
198 | 196, 197 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1...1) =
{1} |
199 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
200 | | sneq 4220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → {𝑛} = {1}) |
201 | 198, 199,
200 | 3eqtr4a 2711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (1...𝑛) = {𝑛}) |
202 | 201 | raleqdv 3174 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
203 | 202 | biimprd 238 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
204 | 195, 203 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 − 1) = 0 → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
205 | | ralun 3828 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑏 ∈
(1...(𝑛 − 1))(0 ≤
((𝐹‘(𝑝 ∘𝑓 /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) |
206 | | npcan1 10493 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛) |
207 | 192, 206 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) = 𝑛) |
208 | | elfzuz 12376 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈
(ℤ≥‘1)) |
209 | 207, 208 | eqeltrd 2730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘1)) |
210 | | peano2zm 11458 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℤ → (𝑛 − 1) ∈
ℤ) |
211 | | uzid 11740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 − 1) ∈ ℤ
→ (𝑛 − 1) ∈
(ℤ≥‘(𝑛 − 1))) |
212 | | peano2uz 11779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 − 1) ∈
(ℤ≥‘(𝑛 − 1)) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘(𝑛 − 1))) |
213 | 38, 210, 211, 212 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘(𝑛 − 1))) |
214 | 207, 213 | eqeltrrd 2731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ≥‘(𝑛 − 1))) |
215 | | fzsplit2 12404 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑛 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑛 ∈ (ℤ≥‘(𝑛 − 1))) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛))) |
216 | 209, 214,
215 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛))) |
217 | 207 | oveq1d 6705 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = (𝑛...𝑛)) |
218 | | fzsn 12421 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℤ → (𝑛...𝑛) = {𝑛}) |
219 | 38, 218 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → (𝑛...𝑛) = {𝑛}) |
220 | 217, 219 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = {𝑛}) |
221 | 220 | uneq2d 3800 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) → ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)) = ((1...(𝑛 − 1)) ∪ {𝑛})) |
222 | 216, 221 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ {𝑛})) |
223 | 222 | raleqdv 3174 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
224 | 205, 223 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → ((∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
225 | 224 | expd 451 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
226 | 225 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑏 ∈
(1...(𝑛 − 1))(0 ≤
((𝐹‘(𝑝 ∘𝑓 /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
227 | 226 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
228 | 204, 227 | jaoi 393 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
229 | 228 | imdistand 728 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) → ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
230 | 229 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) → (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
231 | | elun 3786 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) ∈ {0} ∨ (𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
232 | | ovex 6718 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 − 1) ∈
V |
233 | 232 | elsn 4225 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 − 1) ∈ {0} ↔
(𝑛 − 1) =
0) |
234 | | oveq2 6698 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑛 − 1) → (1...𝑎) = (1...(𝑛 − 1))) |
235 | 234 | raleqdv 3174 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝑛 − 1) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
236 | 235 | elrab 3396 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ↔ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
237 | 233, 236 | orbi12i 542 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 − 1) ∈ {0} ∨
(𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
238 | 231, 237 | bitri 264 |
. . . . . . . . . . . . 13
⊢ ((𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
239 | | oveq2 6698 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑛 → (1...𝑎) = (1...𝑛)) |
240 | 239 | raleqdv 3174 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑛 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
241 | 240 | elrab 3396 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ↔ (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
242 | 230, 238,
241 | 3imtr4g 285 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
243 | | elun2 3814 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
244 | 242, 243 | syl6 35 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}))) |
245 | 97, 191, 244 | syl2anc 694 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}))) |
246 | | fimaxre2 11007 |
. . . . . . . . . . . . 13
⊢ ((({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin) → ∃𝑖 ∈ ℝ ∀𝑗 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑗 ≤ 𝑖) |
247 | 43, 29, 246 | mp2an 708 |
. . . . . . . . . . . 12
⊢
∃𝑖 ∈
ℝ ∀𝑗 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑗 ≤ 𝑖 |
248 | 43, 34, 247 | 3pm3.2i 1259 |
. . . . . . . . . . 11
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ ∧ ∃𝑖 ∈ ℝ ∀𝑗 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑗 ≤ 𝑖) |
249 | 248 | suprubii 11036 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
)) |
250 | 245, 249 | syl6 35 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
251 | | ltm1 10901 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) < 𝑛) |
252 | | peano2rem 10386 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) ∈
ℝ) |
253 | 43, 46 | sselii 3633 |
. . . . . . . . . . . 12
⊢ sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
ℝ |
254 | | ltletr 10167 |
. . . . . . . . . . . 12
⊢ (((𝑛 − 1) ∈ ℝ ∧
𝑛 ∈ ℝ ∧
sup(({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ℝ)
→ (((𝑛 − 1) <
𝑛 ∧ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < )) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
255 | 253, 254 | mp3an3 1453 |
. . . . . . . . . . 11
⊢ (((𝑛 − 1) ∈ ℝ ∧
𝑛 ∈ ℝ) →
(((𝑛 − 1) < 𝑛 ∧ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < )) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
256 | 252, 255 | mpancom 704 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → (((𝑛 − 1) < 𝑛 ∧ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < )) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
257 | 251, 256 | mpand 711 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℝ → (𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
258 | 96, 250, 257 | sylsyld 61 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → (𝑛 − 1) < sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
259 | 253 | ltnri 10184 |
. . . . . . . . . 10
⊢ ¬
sup(({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) |
260 | | breq1 4688 |
. . . . . . . . . 10
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ↔ (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
261 | 259, 260 | mtbii 315 |
. . . . . . . . 9
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → ¬ (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
)) |
262 | 261 | necon2ai 2852 |
. . . . . . . 8
⊢ ((𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) → sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1)) |
263 | 258, 262 | syl6 35 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1))) |
264 | | eleq1 2718 |
. . . . . . . . 9
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ (𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}))) |
265 | 46, 264 | mpbii 223 |
. . . . . . . 8
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → (𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
266 | 265 | necon3bi 2849 |
. . . . . . 7
⊢ (¬
(𝑛 − 1) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1)) |
267 | 263, 266 | pm2.61d1 171 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1)) |
268 | 2, 13, 49, 93, 267, 179 | poimirlem28 33567 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∃𝑠 ∈ (((0..^𝑘) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
269 | | nn0ex 11336 |
. . . . . . . . . . . 12
⊢
ℕ0 ∈ V |
270 | | fzo0ssnn0 12588 |
. . . . . . . . . . . 12
⊢
(0..^𝑘) ⊆
ℕ0 |
271 | | mapss 7942 |
. . . . . . . . . . . 12
⊢
((ℕ0 ∈ V ∧ (0..^𝑘) ⊆ ℕ0) →
((0..^𝑘)
↑𝑚 (1...𝑁)) ⊆ (ℕ0
↑𝑚 (1...𝑁))) |
272 | 269, 270,
271 | mp2an 708 |
. . . . . . . . . . 11
⊢
((0..^𝑘)
↑𝑚 (1...𝑁)) ⊆ (ℕ0
↑𝑚 (1...𝑁)) |
273 | | xpss1 5161 |
. . . . . . . . . . 11
⊢
(((0..^𝑘)
↑𝑚 (1...𝑁)) ⊆ (ℕ0
↑𝑚 (1...𝑁)) → (((0..^𝑘) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ⊆ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
274 | 272, 273 | ax-mp 5 |
. . . . . . . . . 10
⊢
(((0..^𝑘)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ⊆ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
275 | 274 | sseli 3632 |
. . . . . . . . 9
⊢ (𝑠 ∈ (((0..^𝑘) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → 𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
276 | | xp1st 7242 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (((0..^𝑘) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘𝑠) ∈ ((0..^𝑘) ↑𝑚
(1...𝑁))) |
277 | | elmapi 7921 |
. . . . . . . . . 10
⊢
((1st ‘𝑠) ∈ ((0..^𝑘) ↑𝑚 (1...𝑁)) → (1st
‘𝑠):(1...𝑁)⟶(0..^𝑘)) |
278 | | frn 6091 |
. . . . . . . . . 10
⊢
((1st ‘𝑠):(1...𝑁)⟶(0..^𝑘) → ran (1st ‘𝑠) ⊆ (0..^𝑘)) |
279 | 276, 277,
278 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑠 ∈ (((0..^𝑘) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ran (1st ‘𝑠) ⊆ (0..^𝑘)) |
280 | 275, 279 | jca 553 |
. . . . . . . 8
⊢ (𝑠 ∈ (((0..^𝑘) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ran (1st ‘𝑠) ⊆ (0..^𝑘))) |
281 | 280 | anim1i 591 |
. . . . . . 7
⊢ ((𝑠 ∈ (((0..^𝑘) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) → ((𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ran (1st ‘𝑠) ⊆ (0..^𝑘)) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
282 | | anass 682 |
. . . . . . 7
⊢ (((𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ran (1st ‘𝑠) ⊆ (0..^𝑘)) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) ↔ (𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
283 | 281, 282 | sylib 208 |
. . . . . 6
⊢ ((𝑠 ∈ (((0..^𝑘) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) → (𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
284 | 283 | reximi2 3039 |
. . . . 5
⊢
(∃𝑠 ∈
(((0..^𝑘)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) →
∃𝑠 ∈
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
285 | 268, 284 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∃𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
286 | 285 | ralrimiva 2995 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ ℕ ∃𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
287 | | nnex 11064 |
. . . 4
⊢ ℕ
∈ V |
288 | 143, 269 | ixpconst 7960 |
. . . . . . 7
⊢ X𝑛 ∈
(1...𝑁)ℕ0
= (ℕ0 ↑𝑚 (1...𝑁)) |
289 | | omelon 8581 |
. . . . . . . . . 10
⊢ ω
∈ On |
290 | | nn0ennn 12818 |
. . . . . . . . . . 11
⊢
ℕ0 ≈ ℕ |
291 | | nnenom 12819 |
. . . . . . . . . . 11
⊢ ℕ
≈ ω |
292 | 290, 291 | entr2i 8052 |
. . . . . . . . . 10
⊢ ω
≈ ℕ0 |
293 | | isnumi 8810 |
. . . . . . . . . 10
⊢ ((ω
∈ On ∧ ω ≈ ℕ0) → ℕ0
∈ dom card) |
294 | 289, 292,
293 | mp2an 708 |
. . . . . . . . 9
⊢
ℕ0 ∈ dom card |
295 | 294 | rgenw 2953 |
. . . . . . . 8
⊢
∀𝑛 ∈
(1...𝑁)ℕ0
∈ dom card |
296 | | finixpnum 33524 |
. . . . . . . 8
⊢
(((1...𝑁) ∈ Fin
∧ ∀𝑛 ∈
(1...𝑁)ℕ0
∈ dom card) → X𝑛 ∈ (1...𝑁)ℕ0 ∈ dom
card) |
297 | 25, 295, 296 | mp2an 708 |
. . . . . . 7
⊢ X𝑛 ∈
(1...𝑁)ℕ0
∈ dom card |
298 | 288, 297 | eqeltrri 2727 |
. . . . . 6
⊢
(ℕ0 ↑𝑚 (1...𝑁)) ∈ dom card |
299 | 143, 143 | mapval 7911 |
. . . . . . . . 9
⊢
((1...𝑁)
↑𝑚 (1...𝑁)) = {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} |
300 | | mapfi 8303 |
. . . . . . . . . 10
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((1...𝑁)
↑𝑚 (1...𝑁)) ∈ Fin) |
301 | 25, 25, 300 | mp2an 708 |
. . . . . . . . 9
⊢
((1...𝑁)
↑𝑚 (1...𝑁)) ∈ Fin |
302 | 299, 301 | eqeltrri 2727 |
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} ∈ Fin |
303 | | f1of 6175 |
. . . . . . . . 9
⊢ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑓:(1...𝑁)⟶(1...𝑁)) |
304 | 303 | ss2abi 3707 |
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} |
305 | | ssfi 8221 |
. . . . . . . 8
⊢ (({𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)}) → {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) |
306 | 302, 304,
305 | mp2an 708 |
. . . . . . 7
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin |
307 | | finnum 8812 |
. . . . . . 7
⊢ ({𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin → {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ dom card) |
308 | 306, 307 | ax-mp 5 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ dom card |
309 | | xpnum 8815 |
. . . . . 6
⊢
(((ℕ0 ↑𝑚 (1...𝑁)) ∈ dom card ∧ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ dom card) →
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ dom card) |
310 | 298, 308,
309 | mp2an 708 |
. . . . 5
⊢
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ dom card |
311 | | ssrab2 3720 |
. . . . . . . 8
⊢ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
312 | 311 | rgenw 2953 |
. . . . . . 7
⊢
∀𝑘 ∈
ℕ {𝑠 ∈
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
313 | | ss2iun 4568 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ {𝑠 ∈
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
∪ 𝑘 ∈ ℕ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
314 | 312, 313 | ax-mp 5 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
∪ 𝑘 ∈ ℕ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
315 | | 1nn 11069 |
. . . . . . 7
⊢ 1 ∈
ℕ |
316 | | ne0i 3954 |
. . . . . . 7
⊢ (1 ∈
ℕ → ℕ ≠ ∅) |
317 | | iunconst 4561 |
. . . . . . 7
⊢ (ℕ
≠ ∅ → ∪ 𝑘 ∈ ℕ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
318 | 315, 316,
317 | mp2b 10 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
319 | 314, 318 | sseqtri 3670 |
. . . . 5
⊢ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
320 | | ssnum 8900 |
. . . . 5
⊢
((((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ dom card ∧ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ∈ dom
card) |
321 | 310, 319,
320 | mp2an 708 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ∈ dom
card |
322 | | fveq2 6229 |
. . . . . . . 8
⊢ (𝑠 = (𝑔‘𝑘) → (1st ‘𝑠) = (1st
‘(𝑔‘𝑘))) |
323 | 322 | rneqd 5385 |
. . . . . . 7
⊢ (𝑠 = (𝑔‘𝑘) → ran (1st ‘𝑠) = ran (1st
‘(𝑔‘𝑘))) |
324 | 323 | sseq1d 3665 |
. . . . . 6
⊢ (𝑠 = (𝑔‘𝑘) → (ran (1st ‘𝑠) ⊆ (0..^𝑘) ↔ ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘))) |
325 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 = (𝑔‘𝑘) → (2nd ‘𝑠) = (2nd
‘(𝑔‘𝑘))) |
326 | 325 | imaeq1d 5500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = (𝑔‘𝑘) → ((2nd ‘𝑠) “ (1...𝑗)) = ((2nd
‘(𝑔‘𝑘)) “ (1...𝑗))) |
327 | 326 | xpeq1d 5172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = (𝑔‘𝑘) → (((2nd ‘𝑠) “ (1...𝑗)) × {1}) =
(((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1})) |
328 | 325 | imaeq1d 5500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = (𝑔‘𝑘) → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁))) |
329 | 328 | xpeq1d 5172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = (𝑔‘𝑘) → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})) |
330 | 327, 329 | uneq12d 3801 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = (𝑔‘𝑘) → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0})) =
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
331 | 322, 330 | oveq12d 6708 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (𝑔‘𝑘) → ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
332 | 331 | oveq1d 6705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑔‘𝑘) → (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})) = (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘}))) |
333 | 332 | fveq2d 6233 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑔‘𝑘) → (𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘}))) = (𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))) |
334 | 333 | fveq1d 6231 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑔‘𝑘) → ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏)) |
335 | 334 | breq2d 4697 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑔‘𝑘) → (0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏))) |
336 | 331 | fveq1d 6231 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑔‘𝑘) → (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) = (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏)) |
337 | 336 | neeq1d 2882 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑔‘𝑘) → ((((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0 ↔ (((1st
‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
338 | 335, 337 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑔‘𝑘) → ((0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
339 | 338 | ralbidv 3015 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑔‘𝑘) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
340 | 339 | rabbidv 3220 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑔‘𝑘) → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
341 | 340 | uneq2d 3800 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑔‘𝑘) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
342 | 341 | supeq1d 8393 |
. . . . . . . . 9
⊢ (𝑠 = (𝑔‘𝑘) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
343 | 342 | eqeq2d 2661 |
. . . . . . . 8
⊢ (𝑠 = (𝑔‘𝑘) → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
344 | 343 | rexbidv 3081 |
. . . . . . 7
⊢ (𝑠 = (𝑔‘𝑘) → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
345 | 344 | ralbidv 3015 |
. . . . . 6
⊢ (𝑠 = (𝑔‘𝑘) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
346 | 324, 345 | anbi12d 747 |
. . . . 5
⊢ (𝑠 = (𝑔‘𝑘) → ((ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) ↔ (ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
347 | 346 | ac6num 9339 |
. . . 4
⊢ ((ℕ
∈ V ∧ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ∈ dom
card ∧ ∀𝑘 ∈
ℕ ∃𝑠 ∈
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∃𝑔(𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
348 | 287, 321,
347 | mp3an12 1454 |
. . 3
⊢
(∀𝑘 ∈
ℕ ∃𝑠 ∈
((ℕ0 ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∃𝑔(𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
349 | 286, 348 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
350 | 1 | ad2antrr 762 |
. . . 4
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝑁 ∈
ℕ) |
351 | | poimir.r |
. . . 4
⊢ 𝑅 =
(∏t‘((1...𝑁) × {(topGen‘ran
(,))})) |
352 | | poimir.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
353 | 352 | ad2antrr 762 |
. . . 4
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
354 | | eqid 2651 |
. . . 4
⊢ ((𝐹‘(((1st
‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑛) = ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑛) |
355 | | simplr 807 |
. . . 4
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
356 | | simpl 472 |
. . . . . . 7
⊢ ((ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) → ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘)) |
357 | 356 | ralimi 2981 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ (ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∀𝑘 ∈ ℕ
ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘)) |
358 | 357 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∀𝑘 ∈ ℕ
ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘)) |
359 | | fveq2 6229 |
. . . . . . . . 9
⊢ (𝑘 = 𝑝 → (𝑔‘𝑘) = (𝑔‘𝑝)) |
360 | 359 | fveq2d 6233 |
. . . . . . . 8
⊢ (𝑘 = 𝑝 → (1st ‘(𝑔‘𝑘)) = (1st ‘(𝑔‘𝑝))) |
361 | 360 | rneqd 5385 |
. . . . . . 7
⊢ (𝑘 = 𝑝 → ran (1st ‘(𝑔‘𝑘)) = ran (1st ‘(𝑔‘𝑝))) |
362 | | oveq2 6698 |
. . . . . . 7
⊢ (𝑘 = 𝑝 → (0..^𝑘) = (0..^𝑝)) |
363 | 361, 362 | sseq12d 3667 |
. . . . . 6
⊢ (𝑘 = 𝑝 → (ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ↔ ran (1st ‘(𝑔‘𝑝)) ⊆ (0..^𝑝))) |
364 | 363 | rspccva 3339 |
. . . . 5
⊢
((∀𝑘 ∈
ℕ ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ 𝑝 ∈ ℕ) → ran (1st
‘(𝑔‘𝑝)) ⊆ (0..^𝑝)) |
365 | 358, 364 | sylan 487 |
. . . 4
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ 𝑝 ∈ ℕ) → ran
(1st ‘(𝑔‘𝑝)) ⊆ (0..^𝑝)) |
366 | | simpll 805 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝜑) |
367 | | poimir.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) |
368 | 366, 367 | sylan 487 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) |
369 | | eqid 2651 |
. . . . 5
⊢
((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) |
370 | | simpr 476 |
. . . . . . . 8
⊢ ((ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
371 | 370 | ralimi 2981 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ (ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∀𝑘 ∈ ℕ
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
372 | 371 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∀𝑘 ∈ ℕ
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
373 | 359 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑝 → (2nd ‘(𝑔‘𝑘)) = (2nd ‘(𝑔‘𝑝))) |
374 | 373 | imaeq1d 5500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑝 → ((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) = ((2nd ‘(𝑔‘𝑝)) “ (1...𝑗))) |
375 | 374 | xpeq1d 5172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑝 → (((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) = (((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) ×
{1})) |
376 | 373 | imaeq1d 5500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑝 → ((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁))) |
377 | 376 | xpeq1d 5172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑝 → (((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})) |
378 | 375, 377 | uneq12d 3801 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑝 → ((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
379 | 360, 378 | oveq12d 6708 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑝 → ((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
380 | | sneq 4220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑝 → {𝑘} = {𝑝}) |
381 | 380 | xpeq2d 5173 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑝 → ((1...𝑁) × {𝑘}) = ((1...𝑁) × {𝑝})) |
382 | 379, 381 | oveq12d 6708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑝 → (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})) = (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝}))) |
383 | 382 | fveq2d 6233 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑝 → (𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘}))) = (𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))) |
384 | 383 | fveq1d 6231 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑝 → ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏)) |
385 | 384 | breq2d 4697 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑝 → (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏))) |
386 | 379 | fveq1d 6231 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑝 → (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) = (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏)) |
387 | 386 | neeq1d 2882 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑝 → ((((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0 ↔ (((1st
‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
388 | 385, 387 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑝 → ((0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
389 | 388 | ralbidv 3015 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑝 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
390 | 389 | rabbidv 3220 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑝 → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
391 | 390 | uneq2d 3800 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑝 → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
392 | 391 | supeq1d 8393 |
. . . . . . . . 9
⊢ (𝑘 = 𝑝 → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
393 | 392 | eqeq2d 2661 |
. . . . . . . 8
⊢ (𝑘 = 𝑝 → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
394 | 393 | rexbidv 3081 |
. . . . . . 7
⊢ (𝑘 = 𝑝 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
395 | | eqeq1 2655 |
. . . . . . . . 9
⊢ (𝑖 = 𝑞 → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
396 | 395 | rexbidv 3081 |
. . . . . . . 8
⊢ (𝑖 = 𝑞 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
397 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑚 → (1...𝑗) = (1...𝑚)) |
398 | 397 | imaeq2d 5501 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑚 → ((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) = ((2nd ‘(𝑔‘𝑝)) “ (1...𝑚))) |
399 | 398 | xpeq1d 5172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑚 → (((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) = (((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) ×
{1})) |
400 | | oveq1 6697 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑚 → (𝑗 + 1) = (𝑚 + 1)) |
401 | 400 | oveq1d 6705 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑚 → ((𝑗 + 1)...𝑁) = ((𝑚 + 1)...𝑁)) |
402 | 401 | imaeq2d 5501 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑚 → ((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁))) |
403 | 402 | xpeq1d 5172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑚 → (((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})) |
404 | 399, 403 | uneq12d 3801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑚 → ((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) |
405 | 404 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑚 → ((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))) |
406 | 405 | oveq1d 6705 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑚 → (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})) = (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝}))) |
407 | 406 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑚 → (𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝}))) = (𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))) |
408 | 407 | fveq1d 6231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) = ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏)) |
409 | 408 | breq2d 4697 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑚 → (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏))) |
410 | 405 | fveq1d 6231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) = (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏)) |
411 | 410 | neeq1d 2882 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑚 → ((((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0 ↔ (((1st
‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
412 | 409, 411 | anbi12d 747 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑚 → ((0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
413 | 412 | ralbidv 3015 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
414 | 413 | rabbidv 3220 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
415 | 414 | uneq2d 3800 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑚 → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
416 | 415 | supeq1d 8393 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
417 | 416 | eqeq2d 2661 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
418 | 417 | cbvrexv 3202 |
. . . . . . . 8
⊢
(∃𝑗 ∈
(0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
419 | 396, 418 | syl6bb 276 |
. . . . . . 7
⊢ (𝑖 = 𝑞 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
420 | 394, 419 | rspc2v 3353 |
. . . . . 6
⊢ ((𝑝 ∈ ℕ ∧ 𝑞 ∈ (0...𝑁)) → (∀𝑘 ∈ ℕ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) →
∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
421 | 372, 420 | mpan9 485 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ (0...𝑁))) → ∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
422 | 350, 140,
351, 353, 368, 369, 355, 365, 421 | poimirlem31 33570 |
. . . 4
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ (𝑝 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑚 ∈ (0...𝑁)0𝑟((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑝})))‘𝑛)) |
423 | 350, 140,
351, 353, 354, 355, 365, 422 | poimirlem30 33569 |
. . 3
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
424 | 423 | anasss 680 |
. 2
⊢ ((𝜑 ∧ (𝑔:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘𝑓 +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )))) →
∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
425 | 349, 424 | exlimddv 1903 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |