Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem1 Structured version   Visualization version   GIF version

Theorem poimirlem1 33736
Description: Lemma for poimir 33768- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem2.1 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))
poimirlem2.2 (𝜑𝑇:(1...𝑁)⟶ℤ)
poimirlem2.3 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
poimirlem1.4 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
Assertion
Ref Expression
poimirlem1 (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
Distinct variable groups:   𝑗,𝑛,𝑦,𝜑   𝑗,𝐹,𝑛,𝑦   𝑗,𝑀,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝑈,𝑗,𝑛,𝑦

Proof of Theorem poimirlem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 poimirlem2.3 . . . . 5 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
2 f1of 6278 . . . . 5 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)⟶(1...𝑁))
31, 2syl 17 . . . 4 (𝜑𝑈:(1...𝑁)⟶(1...𝑁))
4 poimir.0 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54nncnd 11237 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
6 npcan1 10656 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
75, 6syl 17 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
84nnzd 11682 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
9 peano2zm 11621 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
10 uzid 11902 . . . . . . . 8 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
11 peano2uz 11942 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
128, 9, 10, 114syl 19 . . . . . . 7 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
137, 12eqeltrrd 2850 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
14 fzss2 12587 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
1513, 14syl 17 . . . . 5 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
16 poimirlem1.4 . . . . 5 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
1715, 16sseldd 3751 . . . 4 (𝜑𝑀 ∈ (1...𝑁))
183, 17ffvelrnd 6503 . . 3 (𝜑 → (𝑈𝑀) ∈ (1...𝑁))
19 fzp1elp1 12600 . . . . . 6 (𝑀 ∈ (1...(𝑁 − 1)) → (𝑀 + 1) ∈ (1...((𝑁 − 1) + 1)))
2016, 19syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ (1...((𝑁 − 1) + 1)))
217oveq2d 6808 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
2220, 21eleqtrd 2851 . . . 4 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
233, 22ffvelrnd 6503 . . 3 (𝜑 → (𝑈‘(𝑀 + 1)) ∈ (1...𝑁))
24 imassrn 5618 . . . . . . . . . 10 (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ ran 𝑈
25 frn 6193 . . . . . . . . . . 11 (𝑈:(1...𝑁)⟶(1...𝑁) → ran 𝑈 ⊆ (1...𝑁))
261, 2, 253syl 18 . . . . . . . . . 10 (𝜑 → ran 𝑈 ⊆ (1...𝑁))
2724, 26syl5ss 3761 . . . . . . . . 9 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (1...𝑁))
2827sselda 3750 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (1...𝑁))
29 poimirlem2.2 . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ℤ)
3029ffvelrnda 6502 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ∈ ℤ)
3130zred 11683 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ∈ ℝ)
3231ltp1d 11155 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) < ((𝑇𝑛) + 1))
3331, 32ltned 10374 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ≠ ((𝑇𝑛) + 1))
3428, 33syldan 571 . . . . . . 7 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (𝑇𝑛) ≠ ((𝑇𝑛) + 1))
35 poimirlem2.1 . . . . . . . . . . 11 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))
36 breq1 4787 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀 − 1) → (𝑦 < 𝑀 ↔ (𝑀 − 1) < 𝑀))
37 id 22 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀 − 1) → 𝑦 = (𝑀 − 1))
3836, 37ifbieq1d 4246 . . . . . . . . . . . . . 14 (𝑦 = (𝑀 − 1) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑀 − 1) < 𝑀, (𝑀 − 1), (𝑦 + 1)))
39 elfzelz 12548 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ ℤ)
4016, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
4140zred 11683 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
4241ltm1d 11157 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) < 𝑀)
4342iftrued 4231 . . . . . . . . . . . . . 14 (𝜑 → if((𝑀 − 1) < 𝑀, (𝑀 − 1), (𝑦 + 1)) = (𝑀 − 1))
4438, 43sylan9eqr 2826 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑀 − 1))
4544csbeq1d 3687 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑀 − 1) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
468, 9syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℤ)
47 elfzm1b 12624 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ∈ (1...(𝑁 − 1)) ↔ (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1))))
4840, 46, 47syl2anc 565 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ↔ (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1))))
4916, 48mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ∈ (0...((𝑁 − 1) − 1)))
50 oveq2 6800 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑀 − 1) → (1...𝑗) = (1...(𝑀 − 1)))
5150imaeq2d 5607 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑀 − 1))))
5251xpeq1d 5278 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑀 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 − 1))) × {1}))
5352adantl 467 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = (𝑀 − 1)) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 − 1))) × {1}))
54 oveq1 6799 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑀 − 1) → (𝑗 + 1) = ((𝑀 − 1) + 1))
5540zcnd 11684 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℂ)
56 npcan1 10656 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
5854, 57sylan9eqr 2826 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 = (𝑀 − 1)) → (𝑗 + 1) = 𝑀)
5958oveq1d 6807 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 = (𝑀 − 1)) → ((𝑗 + 1)...𝑁) = (𝑀...𝑁))
6059imaeq2d 5607 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = (𝑀 − 1)) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (𝑀...𝑁)))
6160xpeq1d 5278 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = (𝑀 − 1)) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (𝑀...𝑁)) × {0}))
6253, 61uneq12d 3917 . . . . . . . . . . . . . . 15 ((𝜑𝑗 = (𝑀 − 1)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))
6362oveq2d 6808 . . . . . . . . . . . . . 14 ((𝜑𝑗 = (𝑀 − 1)) → (𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6449, 63csbied 3707 . . . . . . . . . . . . 13 (𝜑(𝑀 − 1) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6564adantr 466 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑀 − 1)) → (𝑀 − 1) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6645, 65eqtrd 2804 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
6746zcnd 11684 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − 1) ∈ ℂ)
68 npcan1 10656 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℂ → (((𝑁 − 1) − 1) + 1) = (𝑁 − 1))
6967, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → (((𝑁 − 1) − 1) + 1) = (𝑁 − 1))
70 peano2zm 11621 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℤ → ((𝑁 − 1) − 1) ∈ ℤ)
71 uzid 11902 . . . . . . . . . . . . . . 15 (((𝑁 − 1) − 1) ∈ ℤ → ((𝑁 − 1) − 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
72 peano2uz 11942 . . . . . . . . . . . . . . 15 (((𝑁 − 1) − 1) ∈ (ℤ‘((𝑁 − 1) − 1)) → (((𝑁 − 1) − 1) + 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
7346, 70, 71, 724syl 19 . . . . . . . . . . . . . 14 (𝜑 → (((𝑁 − 1) − 1) + 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
7469, 73eqeltrrd 2850 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ (ℤ‘((𝑁 − 1) − 1)))
75 fzss2 12587 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘((𝑁 − 1) − 1)) → (0...((𝑁 − 1) − 1)) ⊆ (0...(𝑁 − 1)))
7674, 75syl 17 . . . . . . . . . . . 12 (𝜑 → (0...((𝑁 − 1) − 1)) ⊆ (0...(𝑁 − 1)))
7776, 49sseldd 3751 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
78 ovexd 6824 . . . . . . . . . . 11 (𝜑 → (𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))) ∈ V)
7935, 66, 77, 78fvmptd 6430 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝑀 − 1)) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))))
8079fveq1d 6334 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛))
8180adantr 466 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛))
82 ffn 6185 . . . . . . . . . . . 12 (𝑇:(1...𝑁)⟶ℤ → 𝑇 Fn (1...𝑁))
8329, 82syl 17 . . . . . . . . . . 11 (𝜑𝑇 Fn (1...𝑁))
8483adantr 466 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑇 Fn (1...𝑁))
85 1ex 10236 . . . . . . . . . . . . . . 15 1 ∈ V
86 fnconstg 6233 . . . . . . . . . . . . . . 15 (1 ∈ V → ((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))))
8785, 86ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1)))
88 c0ex 10235 . . . . . . . . . . . . . . 15 0 ∈ V
89 fnconstg 6233 . . . . . . . . . . . . . . 15 (0 ∈ V → ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)))
9088, 89ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁))
9187, 90pm3.2i 447 . . . . . . . . . . . . 13 (((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)))
92 dff1o3 6284 . . . . . . . . . . . . . . . 16 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun 𝑈))
9392simprbi 478 . . . . . . . . . . . . . . 15 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑈)
94 imain 6114 . . . . . . . . . . . . . . 15 (Fun 𝑈 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))))
951, 93, 943syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))))
96 fzdisj 12574 . . . . . . . . . . . . . . . . 17 ((𝑀 − 1) < 𝑀 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅)
9742, 96syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1...(𝑀 − 1)) ∩ (𝑀...𝑁)) = ∅)
9897imaeq2d 5607 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = (𝑈 “ ∅))
99 ima0 5622 . . . . . . . . . . . . . . 15 (𝑈 “ ∅) = ∅
10098, 99syl6eq 2820 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ ((1...(𝑀 − 1)) ∩ (𝑀...𝑁))) = ∅)
10195, 100eqtr3d 2806 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅)
102 fnun 6137 . . . . . . . . . . . . 13 (((((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁))) ∧ ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅) → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))))
10391, 101, 102sylancr 567 . . . . . . . . . . . 12 (𝜑 → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))))
104 elfzuz 12544 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (ℤ‘1))
10516, 104syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ (ℤ‘1))
10657, 105eqeltrd 2849 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑀 − 1) + 1) ∈ (ℤ‘1))
107 peano2zm 11621 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
108 uzid 11902 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ ℤ → (𝑀 − 1) ∈ (ℤ‘(𝑀 − 1)))
109 peano2uz 11942 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ (ℤ‘(𝑀 − 1)) → ((𝑀 − 1) + 1) ∈ (ℤ‘(𝑀 − 1)))
11040, 107, 108, 1094syl 19 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑀 − 1) + 1) ∈ (ℤ‘(𝑀 − 1)))
11157, 110eqeltrrd 2850 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ‘(𝑀 − 1)))
112 peano2uz 11942 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (𝑀 + 1) ∈ (ℤ‘(𝑀 − 1)))
113 uzss 11908 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 + 1) ∈ (ℤ‘(𝑀 − 1)) → (ℤ‘(𝑀 + 1)) ⊆ (ℤ‘(𝑀 − 1)))
114111, 112, 1133syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ (ℤ‘(𝑀 − 1)))
115 elfzuz3 12545 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑀))
116 eluzp1p1 11913 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 − 1) ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
11716, 115, 1163syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
1187, 117eqeltrrd 2850 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
119114, 118sseldd 3751 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘(𝑀 − 1)))
120 fzsplit2 12572 . . . . . . . . . . . . . . . . . 18 ((((𝑀 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)))
121106, 119, 120syl2anc 565 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)))
12257oveq1d 6807 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑀 − 1) + 1)...𝑁) = (𝑀...𝑁))
123122uneq2d 3916 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...(𝑀 − 1)) ∪ (((𝑀 − 1) + 1)...𝑁)) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁)))
124121, 123eqtrd 2804 . . . . . . . . . . . . . . . 16 (𝜑 → (1...𝑁) = ((1...(𝑀 − 1)) ∪ (𝑀...𝑁)))
125124imaeq2d 5607 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))))
126 imaundi 5686 . . . . . . . . . . . . . . 15 (𝑈 “ ((1...(𝑀 − 1)) ∪ (𝑀...𝑁))) = ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁)))
127125, 126syl6eq 2820 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (1...𝑁)) = ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))))
128 f1ofo 6285 . . . . . . . . . . . . . . 15 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁))
129 foima 6261 . . . . . . . . . . . . . . 15 (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁))
1301, 128, 1293syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁))
131127, 130eqtr3d 2806 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))) = (1...𝑁))
132131fneq2d 6122 . . . . . . . . . . . 12 (𝜑 → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 − 1))) ∪ (𝑈 “ (𝑀...𝑁))) ↔ (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁)))
133103, 132mpbid 222 . . . . . . . . . . 11 (𝜑 → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁))
134133adantr 466 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})) Fn (1...𝑁))
135 ovexd 6824 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (1...𝑁) ∈ V)
136 inidm 3969 . . . . . . . . . 10 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
137 eqidd 2771 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇𝑛) = (𝑇𝑛))
138101adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅)
139 fzss2 12587 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀...(𝑀 + 1)) ⊆ (𝑀...𝑁))
140 imass2 5642 . . . . . . . . . . . . . . 15 ((𝑀...(𝑀 + 1)) ⊆ (𝑀...𝑁) → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (𝑀...𝑁)))
141118, 139, 1403syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (𝑀...𝑁)))
142141sselda 3750 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (𝑈 “ (𝑀...𝑁)))
143 fvun2 6412 . . . . . . . . . . . . . 14 ((((𝑈 “ (1...(𝑀 − 1))) × {1}) Fn (𝑈 “ (1...(𝑀 − 1))) ∧ ((𝑈 “ (𝑀...𝑁)) × {0}) Fn (𝑈 “ (𝑀...𝑁)) ∧ (((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑀...𝑁)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛))
14487, 90, 143mp3an12 1561 . . . . . . . . . . . . 13 ((((𝑈 “ (1...(𝑀 − 1))) ∩ (𝑈 “ (𝑀...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑀...𝑁))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛))
145138, 142, 144syl2anc 565 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛))
14688fvconst2 6612 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑈 “ (𝑀...𝑁)) → (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛) = 0)
147142, 146syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (𝑀...𝑁)) × {0})‘𝑛) = 0)
148145, 147eqtrd 2804 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = 0)
149148adantr 466 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0}))‘𝑛) = 0)
15084, 134, 135, 135, 136, 137, 149ofval 7052 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 0))
15128, 150mpdan 659 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 − 1))) × {1}) ∪ ((𝑈 “ (𝑀...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 0))
15230zcnd 11684 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑇𝑛) ∈ ℂ)
153152addid1d 10437 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑇𝑛) + 0) = (𝑇𝑛))
15428, 153syldan 571 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇𝑛) + 0) = (𝑇𝑛))
15581, 151, 1543eqtrd 2808 . . . . . . 7 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) = (𝑇𝑛))
156 breq1 4787 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (𝑦 < 𝑀𝑀 < 𝑀))
157 oveq1 6799 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (𝑦 + 1) = (𝑀 + 1))
158156, 157ifbieq2d 4248 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if(𝑀 < 𝑀, 𝑦, (𝑀 + 1)))
15941ltnrd 10372 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑀 < 𝑀)
160159iffalsed 4234 . . . . . . . . . . . . . 14 (𝜑 → if(𝑀 < 𝑀, 𝑦, (𝑀 + 1)) = (𝑀 + 1))
161158, 160sylan9eqr 2826 . . . . . . . . . . . . 13 ((𝜑𝑦 = 𝑀) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑀 + 1))
162161csbeq1d 3687 . . . . . . . . . . . 12 ((𝜑𝑦 = 𝑀) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑀 + 1) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
163 ovex 6822 . . . . . . . . . . . . 13 (𝑀 + 1) ∈ V
164 oveq2 6800 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑀 + 1) → (1...𝑗) = (1...(𝑀 + 1)))
165164imaeq2d 5607 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑀 + 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑀 + 1))))
166165xpeq1d 5278 . . . . . . . . . . . . . . 15 (𝑗 = (𝑀 + 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑀 + 1))) × {1}))
167 oveq1 6799 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 + 1) → (𝑗 + 1) = ((𝑀 + 1) + 1))
168167oveq1d 6807 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑀 + 1) → ((𝑗 + 1)...𝑁) = (((𝑀 + 1) + 1)...𝑁))
169168imaeq2d 5607 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑀 + 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
170169xpeq1d 5278 . . . . . . . . . . . . . . 15 (𝑗 = (𝑀 + 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))
171166, 170uneq12d 3917 . . . . . . . . . . . . . 14 (𝑗 = (𝑀 + 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))
172171oveq2d 6808 . . . . . . . . . . . . 13 (𝑗 = (𝑀 + 1) → (𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))))
173163, 172csbie 3706 . . . . . . . . . . . 12 (𝑀 + 1) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))
174162, 173syl6eq 2820 . . . . . . . . . . 11 ((𝜑𝑦 = 𝑀) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))))
175 fz1ssfz0 12642 . . . . . . . . . . . 12 (1...(𝑁 − 1)) ⊆ (0...(𝑁 − 1))
176175, 16sseldi 3748 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...(𝑁 − 1)))
177 ovexd 6824 . . . . . . . . . . 11 (𝜑 → (𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))) ∈ V)
17835, 174, 176, 177fvmptd 6430 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) = (𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))))
179178fveq1d 6334 . . . . . . . . 9 (𝜑 → ((𝐹𝑀)‘𝑛) = ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛))
180179adantr 466 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹𝑀)‘𝑛) = ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛))
181 fnconstg 6233 . . . . . . . . . . . . . . 15 (1 ∈ V → ((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))))
18285, 181ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1)))
183 fnconstg 6233 . . . . . . . . . . . . . . 15 (0 ∈ V → ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
18488, 183ax-mp 5 . . . . . . . . . . . . . 14 ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁))
185182, 184pm3.2i 447 . . . . . . . . . . . . 13 (((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
186 imain 6114 . . . . . . . . . . . . . . . 16 (Fun 𝑈 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
1871, 93, 1863syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
188 peano2re 10410 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
18941, 188syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ ℝ)
190189ltp1d 11155 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) < ((𝑀 + 1) + 1))
191 fzdisj 12574 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) < ((𝑀 + 1) + 1) → ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁)) = ∅)
192190, 191syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁)) = ∅)
193192imaeq2d 5607 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ ((1...(𝑀 + 1)) ∩ (((𝑀 + 1) + 1)...𝑁))) = (𝑈 “ ∅))
194187, 193eqtr3d 2806 . . . . . . . . . . . . . 14 (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = (𝑈 “ ∅))
195194, 99syl6eq 2820 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅)
196 fnun 6137 . . . . . . . . . . . . 13 (((((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) ∧ ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅) → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
197185, 195, 196sylancr 567 . . . . . . . . . . . 12 (𝜑 → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
198 fzsplit 12573 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)))
19922, 198syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1...𝑁) = ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)))
200199imaeq2d 5607 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))))
201 imaundi 5686 . . . . . . . . . . . . . . 15 (𝑈 “ ((1...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁)))
202200, 201syl6eq 2820 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (1...𝑁)) = ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))))
203202, 130eqtr3d 2806 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = (1...𝑁))
204203fneq2d 6122 . . . . . . . . . . . 12 (𝜑 → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑀 + 1))) ∪ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) ↔ (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)))
205197, 204mpbid 222 . . . . . . . . . . 11 (𝜑 → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))
206205adantr 466 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))
207195adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅)
208 fzss1 12586 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → (𝑀...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)))
209 imass2 5642 . . . . . . . . . . . . . . 15 ((𝑀...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)) → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (1...(𝑀 + 1))))
210105, 208, 2093syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) ⊆ (𝑈 “ (1...(𝑀 + 1))))
211210sselda 3750 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))))
212 fvun1 6411 . . . . . . . . . . . . . 14 ((((𝑈 “ (1...(𝑀 + 1))) × {1}) Fn (𝑈 “ (1...(𝑀 + 1))) ∧ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑀 + 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛))
213182, 184, 212mp3an12 1561 . . . . . . . . . . . . 13 ((((𝑈 “ (1...(𝑀 + 1))) ∩ (𝑈 “ (((𝑀 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛))
214207, 211, 213syl2anc 565 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛))
21585fvconst2 6612 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑈 “ (1...(𝑀 + 1))) → (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛) = 1)
216211, 215syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → (((𝑈 “ (1...(𝑀 + 1))) × {1})‘𝑛) = 1)
217214, 216eqtrd 2804 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1)
218217adantr 466 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1)
21984, 206, 135, 135, 136, 137, 218ofval 7052 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 1))
22028, 219mpdan 659 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝑇𝑓 + (((𝑈 “ (1...(𝑀 + 1))) × {1}) ∪ ((𝑈 “ (((𝑀 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇𝑛) + 1))
221180, 220eqtrd 2804 . . . . . . 7 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹𝑀)‘𝑛) = ((𝑇𝑛) + 1))
22234, 155, 2213netr4d 3019 . . . . . 6 ((𝜑𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))) → ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
223222ralrimiva 3114 . . . . 5 (𝜑 → ∀𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
224 fzpr 12602 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
22516, 39, 2243syl 18 . . . . . . . 8 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
226225imaeq2d 5607 . . . . . . 7 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) = (𝑈 “ {𝑀, (𝑀 + 1)}))
227 f1ofn 6279 . . . . . . . . 9 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁))
2281, 227syl 17 . . . . . . . 8 (𝜑𝑈 Fn (1...𝑁))
229 fnimapr 6404 . . . . . . . 8 ((𝑈 Fn (1...𝑁) ∧ 𝑀 ∈ (1...𝑁) ∧ (𝑀 + 1) ∈ (1...𝑁)) → (𝑈 “ {𝑀, (𝑀 + 1)}) = {(𝑈𝑀), (𝑈‘(𝑀 + 1))})
230228, 17, 22, 229syl3anc 1475 . . . . . . 7 (𝜑 → (𝑈 “ {𝑀, (𝑀 + 1)}) = {(𝑈𝑀), (𝑈‘(𝑀 + 1))})
231226, 230eqtrd 2804 . . . . . 6 (𝜑 → (𝑈 “ (𝑀...(𝑀 + 1))) = {(𝑈𝑀), (𝑈‘(𝑀 + 1))})
232231raleqdv 3292 . . . . 5 (𝜑 → (∀𝑛 ∈ (𝑈 “ (𝑀...(𝑀 + 1)))((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ∀𝑛 ∈ {(𝑈𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)))
233223, 232mpbid 222 . . . 4 (𝜑 → ∀𝑛 ∈ {(𝑈𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
234 fvex 6342 . . . . 5 (𝑈𝑀) ∈ V
235 fvex 6342 . . . . 5 (𝑈‘(𝑀 + 1)) ∈ V
236 fveq2 6332 . . . . . 6 (𝑛 = (𝑈𝑀) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘(𝑈𝑀)))
237 fveq2 6332 . . . . . 6 (𝑛 = (𝑈𝑀) → ((𝐹𝑀)‘𝑛) = ((𝐹𝑀)‘(𝑈𝑀)))
238236, 237neeq12d 3003 . . . . 5 (𝑛 = (𝑈𝑀) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀))))
239 fveq2 6332 . . . . . 6 (𝑛 = (𝑈‘(𝑀 + 1)) → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))))
240 fveq2 6332 . . . . . 6 (𝑛 = (𝑈‘(𝑀 + 1)) → ((𝐹𝑀)‘𝑛) = ((𝐹𝑀)‘(𝑈‘(𝑀 + 1))))
241239, 240neeq12d 3003 . . . . 5 (𝑛 = (𝑈‘(𝑀 + 1)) → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
242234, 235, 238, 241ralpr 4373 . . . 4 (∀𝑛 ∈ {(𝑈𝑀), (𝑈‘(𝑀 + 1))} ((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
243233, 242sylib 208 . . 3 (𝜑 → (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
24441ltp1d 11155 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
24541, 244ltned 10374 . . . 4 (𝜑𝑀 ≠ (𝑀 + 1))
246 f1of1 6277 . . . . . . 7 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–1-1→(1...𝑁))
2471, 246syl 17 . . . . . 6 (𝜑𝑈:(1...𝑁)–1-1→(1...𝑁))
248 f1veqaeq 6656 . . . . . 6 ((𝑈:(1...𝑁)–1-1→(1...𝑁) ∧ (𝑀 ∈ (1...𝑁) ∧ (𝑀 + 1) ∈ (1...𝑁))) → ((𝑈𝑀) = (𝑈‘(𝑀 + 1)) → 𝑀 = (𝑀 + 1)))
249247, 17, 22, 248syl12anc 1473 . . . . 5 (𝜑 → ((𝑈𝑀) = (𝑈‘(𝑀 + 1)) → 𝑀 = (𝑀 + 1)))
250249necon3d 2963 . . . 4 (𝜑 → (𝑀 ≠ (𝑀 + 1) → (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1))))
251245, 250mpd 15 . . 3 (𝜑 → (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1)))
252238anbi1d 607 . . . . 5 (𝑛 = (𝑈𝑀) → ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚))))
253 neeq1 3004 . . . . 5 (𝑛 = (𝑈𝑀) → (𝑛𝑚 ↔ (𝑈𝑀) ≠ 𝑚))
254252, 253anbi12d 608 . . . 4 (𝑛 = (𝑈𝑀) → (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ (𝑈𝑀) ≠ 𝑚)))
255 fveq2 6332 . . . . . . 7 (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝐹‘(𝑀 − 1))‘𝑚) = ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))))
256 fveq2 6332 . . . . . . 7 (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝐹𝑀)‘𝑚) = ((𝐹𝑀)‘(𝑈‘(𝑀 + 1))))
257255, 256neeq12d 3003 . . . . . 6 (𝑚 = (𝑈‘(𝑀 + 1)) → (((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚) ↔ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))))
258257anbi2d 606 . . . . 5 (𝑚 = (𝑈‘(𝑀 + 1)) → ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ↔ (((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1))))))
259 neeq2 3005 . . . . 5 (𝑚 = (𝑈‘(𝑀 + 1)) → ((𝑈𝑀) ≠ 𝑚 ↔ (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1))))
260258, 259anbi12d 608 . . . 4 (𝑚 = (𝑈‘(𝑀 + 1)) → (((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ (𝑈𝑀) ≠ 𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))) ∧ (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1)))))
261254, 260rspc2ev 3472 . . 3 (((𝑈𝑀) ∈ (1...𝑁) ∧ (𝑈‘(𝑀 + 1)) ∈ (1...𝑁) ∧ ((((𝐹‘(𝑀 − 1))‘(𝑈𝑀)) ≠ ((𝐹𝑀)‘(𝑈𝑀)) ∧ ((𝐹‘(𝑀 − 1))‘(𝑈‘(𝑀 + 1))) ≠ ((𝐹𝑀)‘(𝑈‘(𝑀 + 1)))) ∧ (𝑈𝑀) ≠ (𝑈‘(𝑀 + 1)))) → ∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
26218, 23, 243, 251, 261syl112anc 1479 . 2 (𝜑 → ∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
263 dfrex2 3143 . . 3 (∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ¬ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
264 fveq2 6332 . . . . . 6 (𝑛 = 𝑚 → ((𝐹‘(𝑀 − 1))‘𝑛) = ((𝐹‘(𝑀 − 1))‘𝑚))
265 fveq2 6332 . . . . . 6 (𝑛 = 𝑚 → ((𝐹𝑀)‘𝑛) = ((𝐹𝑀)‘𝑚))
266264, 265neeq12d 3003 . . . . 5 (𝑛 = 𝑚 → (((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)))
267266rmo4 3549 . . . 4 (∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
268 dfral2 3141 . . . . . 6 (∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ¬ ∃𝑚 ∈ (1...𝑁) ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
269 df-ne 2943 . . . . . . . . 9 (𝑛𝑚 ↔ ¬ 𝑛 = 𝑚)
270269anbi2i 601 . . . . . . . 8 (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ ¬ 𝑛 = 𝑚))
271 annim 390 . . . . . . . 8 (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ ¬ 𝑛 = 𝑚) ↔ ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
272270, 271bitri 264 . . . . . . 7 (((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
273272rexbii 3188 . . . . . 6 (∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ∃𝑚 ∈ (1...𝑁) ¬ ((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚))
274268, 273xchbinxr 324 . . . . 5 (∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
275274ralbii 3128 . . . 4 (∀𝑛 ∈ (1...𝑁)∀𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) → 𝑛 = 𝑚) ↔ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
276267, 275bitri 264 . . 3 (∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁) ¬ ∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚))
277263, 276xchbinxr 324 . 2 (∃𝑛 ∈ (1...𝑁)∃𝑚 ∈ (1...𝑁)((((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛) ∧ ((𝐹‘(𝑀 − 1))‘𝑚) ≠ ((𝐹𝑀)‘𝑚)) ∧ 𝑛𝑚) ↔ ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
278262, 277sylib 208 1 (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061  ∃*wrmo 3063  Vcvv 3349  csb 3680  cun 3719  cin 3720  wss 3721  c0 4061  ifcif 4223  {csn 4314  {cpr 4316   class class class wbr 4784  cmpt 4861   × cxp 5247  ccnv 5248  ran crn 5250  cima 5252  Fun wfun 6025   Fn wfn 6026  wf 6027  1-1wf1 6028  ontowfo 6029  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6792  𝑓 cof 7041  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   < clt 10275  cmin 10467  cn 11221  cz 11578  cuz 11887  ...cfz 12532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533
This theorem is referenced by:  poimirlem8  33743  poimirlem18  33753  poimirlem21  33756  poimirlem22  33757
  Copyright terms: Public domain W3C validator