Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimir Structured version   Visualization version   GIF version

Theorem poimir 33572
 Description: Poincare-Miranda theorem. Theorem on [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimir.i 𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))
poimir.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
poimir.1 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
poimir.2 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
poimir.3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))
Assertion
Ref Expression
poimir (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))
Distinct variable groups:   𝑧,𝑛,𝜑   𝑛,𝐹   𝑛,𝑁   𝜑,𝑧   𝑧,𝐹   𝑧,𝑁   𝑛,𝑐,𝑧,𝜑   𝐹,𝑐   𝐼,𝑐,𝑛,𝑧   𝑁,𝑐   𝑅,𝑐,𝑛,𝑧

Proof of Theorem poimir
Dummy variables 𝑥 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3 (𝜑𝑁 ∈ ℕ)
2 poimir.i . . 3 𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))
3 poimir.r . . 3 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
4 poimir.1 . . 3 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
5 poimir.2 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
6 poimir.3 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))
71, 2, 3, 4, 5, 6poimirlem32 33571 . 2 (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
8 ovex 6718 . . . . . . . . . . . . . . . . . . . . . 22 (1...𝑁) ∈ V
9 retopon 22614 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
103pttoponconst 21448 . . . . . . . . . . . . . . . . . . . . . 22 (((1...𝑁) ∈ V ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → 𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁))))
118, 9, 10mp2an 708 . . . . . . . . . . . . . . . . . . . . 21 𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁)))
1211topontopi 20768 . . . . . . . . . . . . . . . . . . . 20 𝑅 ∈ Top
13 reex 10065 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
14 unitssre 12357 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]1) ⊆ ℝ
15 mapss 7942 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑𝑚 (1...𝑁)) ⊆ (ℝ ↑𝑚 (1...𝑁)))
1613, 14, 15mp2an 708 . . . . . . . . . . . . . . . . . . . . 21 ((0[,]1) ↑𝑚 (1...𝑁)) ⊆ (ℝ ↑𝑚 (1...𝑁))
172, 16eqsstri 3668 . . . . . . . . . . . . . . . . . . . 20 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))
1811toponunii 20769 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ↑𝑚 (1...𝑁)) = 𝑅
1918restuni 21014 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))) → 𝐼 = (𝑅t 𝐼))
2012, 17, 19mp2an 708 . . . . . . . . . . . . . . . . . . 19 𝐼 = (𝑅t 𝐼)
2120, 18cnf 21098 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅) → 𝐹:𝐼⟶(ℝ ↑𝑚 (1...𝑁)))
224, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐼⟶(ℝ ↑𝑚 (1...𝑁)))
2322ffvelrnda 6399 . . . . . . . . . . . . . . . 16 ((𝜑𝑐𝐼) → (𝐹𝑐) ∈ (ℝ ↑𝑚 (1...𝑁)))
24 elmapi 7921 . . . . . . . . . . . . . . . 16 ((𝐹𝑐) ∈ (ℝ ↑𝑚 (1...𝑁)) → (𝐹𝑐):(1...𝑁)⟶ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝐼) → (𝐹𝑐):(1...𝑁)⟶ℝ)
2625ffvelrnda 6399 . . . . . . . . . . . . . 14 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑐)‘𝑛) ∈ ℝ)
27 recn 10064 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((𝐹𝑐)‘𝑛) ∈ ℂ)
28 absrpcl 14072 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℂ ∧ ((𝐹𝑐)‘𝑛) ≠ 0) → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+)
2928ex 449 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℂ → (((𝐹𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+))
31 ltsubrp 11904 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛))
32 ltaddrp 11905 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))
3331, 32jca 553 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))
3433ex 449 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+ → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
3530, 34syld 47 . . . . . . . . . . . . . . 15 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
3627abscld 14219 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑐)‘𝑛) ∈ ℝ → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ)
37 resubcl 10383 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
3836, 37mpdan 703 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
3938rexrd 10127 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ*)
40 readdcl 10057 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
4136, 40mpdan 703 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
4241rexrd 10127 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ*)
43 rexr 10123 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((𝐹𝑐)‘𝑛) ∈ ℝ*)
44 elioo5 12269 . . . . . . . . . . . . . . . 16 (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ* ∧ (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ* ∧ ((𝐹𝑐)‘𝑛) ∈ ℝ*) → (((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4539, 42, 43, 44syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4635, 45sylibrd 249 . . . . . . . . . . . . . 14 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4726, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
48 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4948fveq1d 6231 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑐 → ((𝐹𝑥)‘𝑛) = ((𝐹𝑐)‘𝑛))
50 eqid 2651 . . . . . . . . . . . . . . . 16 (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) = (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))
51 fvex 6239 . . . . . . . . . . . . . . . 16 ((𝐹𝑐)‘𝑛) ∈ V
5249, 50, 51fvmpt 6321 . . . . . . . . . . . . . . 15 (𝑐𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) = ((𝐹𝑐)‘𝑛))
5352eleq1d 2715 . . . . . . . . . . . . . 14 (𝑐𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
5453ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
5547, 54sylibrd 249 . . . . . . . . . . . 12 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
56 iooretop 22616 . . . . . . . . . . . . 13 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∈ (topGen‘ran (,))
57 resttopon 21013 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁))) ∧ 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
5811, 17, 57mp2an 708 . . . . . . . . . . . . . . . . . . 19 (𝑅t 𝐼) ∈ (TopOn‘𝐼)
5958a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
6022feqmptd 6288 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
6160, 4eqeltrrd 2731 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn 𝑅))
6261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn 𝑅))
6311a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁))))
64 retop 22612 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
6564fconst6 6133 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top
6618, 3ptpjcn 21462 . . . . . . . . . . . . . . . . . . . . 21 (((1...𝑁) ∈ V ∧ ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top ∧ 𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
678, 65, 66mp3an12 1454 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
68 fvex 6239 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ V
6968fvconst2 6510 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
7069oveq2d 6706 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) = (𝑅 Cn (topGen‘ran (,))))
7167, 70eleqtrd 2732 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (topGen‘ran (,))))
7271adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (topGen‘ran (,))))
73 fveq1 6228 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐹𝑥) → (𝑧𝑛) = ((𝐹𝑥)‘𝑛))
7459, 62, 63, 72, 73cnmpt11 21514 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ ((𝑅t 𝐼) Cn (topGen‘ran (,))))
7520cncnpi 21130 . . . . . . . . . . . . . . . . 17 (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ ((𝑅t 𝐼) Cn (topGen‘ran (,))) ∧ 𝑐𝐼) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
7674, 75sylan 487 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑐𝐼) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
7776an32s 863 . . . . . . . . . . . . . . 15 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
78 iscnp 21089 . . . . . . . . . . . . . . . . 17 (((𝑅t 𝐼) ∈ (TopOn‘𝐼) ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝑐𝐼) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
7958, 9, 78mp3an12 1454 . . . . . . . . . . . . . . . 16 (𝑐𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
8079ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
8177, 80mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧))))
8281simprd 478 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))
83 eleq2 2719 . . . . . . . . . . . . . . 15 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
84 sseq2 3660 . . . . . . . . . . . . . . . . 17 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
8584anbi2d 740 . . . . . . . . . . . . . . . 16 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ (𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
8685rexbidv 3081 . . . . . . . . . . . . . . 15 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
8783, 86imbi12d 333 . . . . . . . . . . . . . 14 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) ↔ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))))
8887rspcv 3336 . . . . . . . . . . . . 13 (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∈ (topGen‘ran (,)) → (∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))))
8956, 82, 88mpsyl 68 . . . . . . . . . . . 12 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
9055, 89syld 47 . . . . . . . . . . 11 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
91 0re 10078 . . . . . . . . . . . 12 0 ∈ ℝ
92 letric 10175 . . . . . . . . . . . 12 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))
9326, 91, 92sylancl 695 . . . . . . . . . . 11 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))
9490, 93jctird 566 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
95 r19.41v 3118 . . . . . . . . . . 11 (∃𝑣 ∈ (𝑅t 𝐼)((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))))
96 anass 682 . . . . . . . . . . . 12 (((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ (𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9796rexbii 3070 . . . . . . . . . . 11 (∃𝑣 ∈ (𝑅t 𝐼)((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9895, 97bitr3i 266 . . . . . . . . . 10 ((∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9994, 98syl6ib 241 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))))))
10058topontopi 20768 . . . . . . . . . . . . 13 (𝑅t 𝐼) ∈ Top
10120eltopss 20760 . . . . . . . . . . . . 13 (((𝑅t 𝐼) ∈ Top ∧ 𝑣 ∈ (𝑅t 𝐼)) → 𝑣𝐼)
102100, 101mpan 706 . . . . . . . . . . . 12 (𝑣 ∈ (𝑅t 𝐼) → 𝑣𝐼)
103 fvex 6239 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥)‘𝑛) ∈ V
104103, 50dmmpti 6061 . . . . . . . . . . . . . . . . 17 dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) = 𝐼
105104sseq2i 3663 . . . . . . . . . . . . . . . 16 (𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ↔ 𝑣𝐼)
106 funmpt 5964 . . . . . . . . . . . . . . . . 17 Fun (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))
107 funimass4 6286 . . . . . . . . . . . . . . . . 17 ((Fun (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∧ 𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
108106, 107mpan 706 . . . . . . . . . . . . . . . 16 (𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
109105, 108sylbir 225 . . . . . . . . . . . . . . 15 (𝑣𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
110 ssel2 3631 . . . . . . . . . . . . . . . . 17 ((𝑣𝐼𝑧𝑣) → 𝑧𝐼)
111 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
112111fveq1d 6231 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝐹𝑥)‘𝑛) = ((𝐹𝑧)‘𝑛))
113 fvex 6239 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑧)‘𝑛) ∈ V
114112, 50, 113fvmpt 6321 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) = ((𝐹𝑧)‘𝑛))
115114eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (𝑧𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑧)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
116 eliooord 12271 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑧)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))
117115, 116syl6bi 243 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
118110, 117syl 17 . . . . . . . . . . . . . . . 16 ((𝑣𝐼𝑧𝑣) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
119118ralimdva 2991 . . . . . . . . . . . . . . 15 (𝑣𝐼 → (∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
120109, 119sylbid 230 . . . . . . . . . . . . . 14 (𝑣𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
121120adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
122 absnid 14082 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (abs‘((𝐹𝑐)‘𝑛)) = -((𝐹𝑐)‘𝑛))
123122oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)))
12427negidd 10420 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)) = 0)
125124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)) = 0)
126123, 125eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
12726, 126sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
129128breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ↔ ((𝐹𝑧)‘𝑛) < 0))
13022ffvelrnda 6399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧𝐼) → (𝐹𝑧) ∈ (ℝ ↑𝑚 (1...𝑁)))
131 elmapi 7921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑧) ∈ (ℝ ↑𝑚 (1...𝑁)) → (𝐹𝑧):(1...𝑁)⟶ℝ)
132130, 131syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧𝐼) → (𝐹𝑧):(1...𝑁)⟶ℝ)
133132ffvelrnda 6399 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) ∈ ℝ)
134133an32s 863 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → ((𝐹𝑧)‘𝑛) ∈ ℝ)
135 0red 10079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → 0 ∈ ℝ)
136134, 135ltnled 10222 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
137136adantllr 755 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
138137adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
139129, 138bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
140139biimpd 219 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
141110, 140sylan2 490 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ (𝑣𝐼𝑧𝑣)) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
142141anassrs 681 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
143142adantld 482 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
144143ralimdva 2991 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
145144an32s 863 . . . . . . . . . . . . . . . 16 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
146145impancom 455 . . . . . . . . . . . . . . 15 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → (((𝐹𝑐)‘𝑛) ≤ 0 → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
147 absid 14080 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (abs‘((𝐹𝑐)‘𝑛)) = ((𝐹𝑐)‘𝑛))
148147oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)))
14927subidd 10418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)) = 0)
150149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)) = 0)
151148, 150eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
15226, 151sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
154153breq1d 4695 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ↔ 0 < ((𝐹𝑧)‘𝑛)))
155135, 134ltnled 10222 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
156155adantllr 755 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
157156adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
158154, 157bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
159158biimpd 219 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
160110, 159sylan2 490 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ (𝑣𝐼𝑧𝑣)) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
161160anassrs 681 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
162161adantrd 483 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
163162ralimdva 2991 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
164163an32s 863 . . . . . . . . . . . . . . . 16 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
165164impancom 455 . . . . . . . . . . . . . . 15 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → (0 ≤ ((𝐹𝑐)‘𝑛) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
166146, 165orim12d 901 . . . . . . . . . . . . . 14 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → ((((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
167166expimpd 628 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → ((∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
168121, 167syland 497 . . . . . . . . . . . 12 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
169102, 168sylan2 490 . . . . . . . . . . 11 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅t 𝐼)) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
170169anim2d 588 . . . . . . . . . 10 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅t 𝐼)) → ((𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))) → (𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
171170reximdva 3046 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
17299, 171syld 47 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
173 ralnex 3021 . . . . . . . . . . . . . 14 (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
174173rexbii 3070 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ }∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∃𝑟 ∈ { ≤ , ≤ } ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
175 letsr 17274 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
176175elexi 3244 . . . . . . . . . . . . . 14 ≤ ∈ V
177176cnvex 7155 . . . . . . . . . . . . . 14 ≤ ∈ V
178 breq 4687 . . . . . . . . . . . . . . . 16 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ 0 ≤ ((𝐹𝑧)‘𝑛)))
179178notbid 307 . . . . . . . . . . . . . . 15 (𝑟 = ≤ → (¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
180179ralbidv 3015 . . . . . . . . . . . . . 14 (𝑟 = ≤ → (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
181 breq 4687 . . . . . . . . . . . . . . . . 17 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ 0 ≤ ((𝐹𝑧)‘𝑛)))
182 c0ex 10072 . . . . . . . . . . . . . . . . . 18 0 ∈ V
183182, 113brcnv 5337 . . . . . . . . . . . . . . . . 17 (0 ≤ ((𝐹𝑧)‘𝑛) ↔ ((𝐹𝑧)‘𝑛) ≤ 0)
184181, 183syl6bb 276 . . . . . . . . . . . . . . . 16 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ ((𝐹𝑧)‘𝑛) ≤ 0))
185184notbid 307 . . . . . . . . . . . . . . 15 (𝑟 = ≤ → (¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
186185ralbidv 3015 . . . . . . . . . . . . . 14 (𝑟 = ≤ → (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
187176, 177, 180, 186rexpr 4271 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ }∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
188 rexnal 3024 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ } ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
189174, 187, 1883bitr3i 290 . . . . . . . . . . . 12 ((∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0) ↔ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
190189anbi2i 730 . . . . . . . . . . 11 ((𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ (𝑐𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
191 annim 440 . . . . . . . . . . 11 ((𝑐𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) ↔ ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
192190, 191bitri 264 . . . . . . . . . 10 ((𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
193192rexbii 3070 . . . . . . . . 9 (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ∃𝑣 ∈ (𝑅t 𝐼) ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
194 rexnal 3024 . . . . . . . . 9 (∃𝑣 ∈ (𝑅t 𝐼) ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) ↔ ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
195193, 194bitri 264 . . . . . . . 8 (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
196172, 195syl6ib 241 . . . . . . 7 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))))
197196necon4ad 2842 . . . . . 6 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ((𝐹𝑐)‘𝑛) = 0))
198197ralimdva 2991 . . . . 5 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0))
199 ffn 6083 . . . . . 6 ((𝐹𝑐):(1...𝑁)⟶ℝ → (𝐹𝑐) Fn (1...𝑁))
20025, 199syl 17 . . . . 5 ((𝜑𝑐𝐼) → (𝐹𝑐) Fn (1...𝑁))
201198, 200jctild 565 . . . 4 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0)))
202 fconstfv 6517 . . . . 5 ((𝐹𝑐):(1...𝑁)⟶{0} ↔ ((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0))
203182fconst2 6511 . . . . 5 ((𝐹𝑐):(1...𝑁)⟶{0} ↔ (𝐹𝑐) = ((1...𝑁) × {0}))
204202, 203bitr3i 266 . . . 4 (((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0) ↔ (𝐹𝑐) = ((1...𝑁) × {0}))
205201, 204syl6ib 241 . . 3 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → (𝐹𝑐) = ((1...𝑁) × {0})))
206205reximdva 3046 . 2 (𝜑 → (∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0})))
2077, 206mpd 15 1 (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ⊆ wss 3607  {csn 4210  {cpr 4212  ∪ cuni 4468   class class class wbr 4685   ↦ cmpt 4762   × cxp 5141  ◡ccnv 5142  dom cdm 5143  ran crn 5144   “ cima 5146  Fun wfun 5920   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304  -cneg 10305  ℕcn 11058  ℝ+crp 11870  (,)cioo 12213  [,]cicc 12216  ...cfz 12364  abscabs 14018   ↾t crest 16128  topGenctg 16145  ∏tcpt 16146   TosetRel ctsr 17246  Topctop 20746  TopOnctopon 20763   Cn ccn 21076   CnP ccnp 21077 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-rest 16130  df-topgen 16151  df-pt 16152  df-ps 17247  df-tsr 17248  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-lp 20988  df-cn 21079  df-cnp 21080  df-t1 21166  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-hmph 21607  df-ii 22727 This theorem is referenced by:  broucube  33573
 Copyright terms: Public domain W3C validator