MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd2 Structured version   Visualization version   GIF version

Theorem pntrsumbnd2 25376
Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumbnd2 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Distinct variable groups:   𝑘,𝑎,𝑚,𝑛   𝑘,𝑐,𝑚,𝑛,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumbnd2
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 pntrval.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd 25375 . 2 𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏
3 2rp 11951 . . . . . 6 2 ∈ ℝ+
4 rpmulcl 11969 . . . . . 6 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
53, 4mpan 708 . . . . 5 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
65adantr 472 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (2 · 𝑏) ∈ ℝ+)
7 nnz 11512 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
87adantl 473 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
9 peano2zm 11533 . . . . . . . 8 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
108, 9syl 17 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
11 simplr 809 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
12 oveq2 6773 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → (1...𝑚) = (1...(𝑘 − 1)))
1312sumeq1d 14551 . . . . . . . . . 10 (𝑚 = (𝑘 − 1) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
1413fveq2d 6308 . . . . . . . . 9 (𝑚 = (𝑘 − 1) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
1514breq1d 4770 . . . . . . . 8 (𝑚 = (𝑘 − 1) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ↔ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏))
1615rspcv 3409 . . . . . . 7 ((𝑘 − 1) ∈ ℤ → (∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏))
1710, 11, 16sylc 65 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)
185ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (2 · 𝑏) ∈ ℝ+)
1918rpge0d 11990 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 0 ≤ (2 · 𝑏))
20 sumeq1 14539 . . . . . . . . . . . . . . . . . . 19 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
21 sum0 14572 . . . . . . . . . . . . . . . . . . 19 Σ𝑛 ∈ ∅ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0
2220, 21syl6eq 2774 . . . . . . . . . . . . . . . . . 18 ((𝑘...𝑚) = ∅ → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = 0)
2322abs00bd 14151 . . . . . . . . . . . . . . . . 17 ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = 0)
2423breq1d 4770 . . . . . . . . . . . . . . . 16 ((𝑘...𝑚) = ∅ → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏) ↔ 0 ≤ (2 · 𝑏)))
2519, 24syl5ibrcom 237 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘...𝑚) = ∅ → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
2625imp 444 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
2726a1d 25 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) = ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
28 fzn0 12469 . . . . . . . . . . . . . 14 ((𝑘...𝑚) ≠ ∅ ↔ 𝑚 ∈ (ℤ𝑘))
29 fzfid 12887 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) ∈ Fin)
30 elfznn 12484 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑚) → 𝑛 ∈ ℕ)
31 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3231nnrpd 11984 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
331pntrf 25372 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅:ℝ+⟶ℝ
3433ffvelrni 6473 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
3532, 34syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑅𝑛) ∈ ℝ)
3631peano2nnd 11150 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
3731, 36nnmulcld 11181 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
3835, 37nndivred 11182 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ ℕ) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
3930, 38sylan2 492 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4029, 39fsumrecl 14585 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4140recnd 10181 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4241abscld 14295 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
43 fzfid 12887 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...(𝑘 − 1)) ∈ Fin)
44 elfznn 12484 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...(𝑘 − 1)) → 𝑛 ∈ ℕ)
4544, 38sylan2 492 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...(𝑘 − 1))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4643, 45fsumrecl 14585 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4746recnd 10181 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
4847abscld 14295 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
49 simplll 815 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ+)
5049rpred 11986 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℝ)
51 le2add 10623 . . . . . . . . . . . . . . . . 17 ((((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5242, 48, 50, 50, 51syl22anc 1440 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
5350recnd 10181 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑏 ∈ ℂ)
54532timesd 11388 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) = (𝑏 + 𝑏))
5554breq2d 4772 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) ↔ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏)))
56 simpllr 817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℕ)
5756nnred 11148 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
5857ltm1d 11069 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) < 𝑘)
59 fzdisj 12482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 − 1) < 𝑘 → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∩ (𝑘...𝑚)) = ∅)
6156nncnd 11149 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℂ)
62 ax-1cn 10107 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℂ
63 npcan 10403 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
6461, 62, 63sylancl 697 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) = 𝑘)
6564, 56eqeltrd 2803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ ℕ)
66 nnuz 11837 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℕ = (ℤ‘1)
6765, 66syl6eleq 2813 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝑘 − 1) + 1) ∈ (ℤ‘1))
6856nnzd 11594 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
6968, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘 − 1) ∈ ℤ)
70 simplr 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℕ)
7170nncnd 11149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑘 ∈ ℂ)
7271, 62, 63sylancl 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑘 − 1) + 1) = 𝑘)
7372fveq2d 6308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (ℤ‘((𝑘 − 1) + 1)) = (ℤ𝑘))
7473eleq2d 2789 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)) ↔ 𝑚 ∈ (ℤ𝑘)))
7574biimpar 503 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1)))
76 peano2uzr 11857 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 − 1) ∈ ℤ ∧ 𝑚 ∈ (ℤ‘((𝑘 − 1) + 1))) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
7769, 75, 76syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚 ∈ (ℤ‘(𝑘 − 1)))
78 fzsplit2 12480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑘 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑚 ∈ (ℤ‘(𝑘 − 1))) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
7967, 77, 78syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)))
8064oveq1d 6780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((𝑘 − 1) + 1)...𝑚) = (𝑘...𝑚))
8180uneq2d 3875 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((1...(𝑘 − 1)) ∪ (((𝑘 − 1) + 1)...𝑚)) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8279, 81eqtrd 2758 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (1...𝑚) = ((1...(𝑘 − 1)) ∪ (𝑘...𝑚)))
8339recnd 10181 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (1...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
8460, 82, 29, 83fsumsplit 14591 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
8584oveq1d 6780 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = ((Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
86 fzfid 12887 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝑘...𝑚) ∈ Fin)
87 elfzuz 12452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑘...𝑚) → 𝑛 ∈ (ℤ𝑘))
88 eluznn 11872 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑘)) → 𝑛 ∈ ℕ)
8956, 87, 88syl2an 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → 𝑛 ∈ ℕ)
9089, 38syldan 488 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑛 ∈ (𝑘...𝑚)) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
9186, 90fsumrecl 14585 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
9291recnd 10181 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
9347, 92pncan2d 10507 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) + Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9485, 93eqtrd 2758 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9594fveq2d 6308 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) = (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9641, 47abs2dif2d 14317 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘(Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) − Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9795, 96eqbrtrrd 4784 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))))
9892abscld 14295 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
9942, 48readdcld 10182 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ)
100 2re 11203 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
101100a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → 2 ∈ ℝ)
102101, 50remulcld 10183 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (2 · 𝑏) ∈ ℝ)
103 letr 10244 . . . . . . . . . . . . . . . . . . 19 (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∈ ℝ ∧ (2 · 𝑏) ∈ ℝ) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10498, 99, 102, 103syl3anc 1439 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ∧ ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10597, 104mpand 713 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (2 · 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10655, 105sylbird 250 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) + (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))) ≤ (𝑏 + 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10752, 106syld 47 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
108107ancomsd 469 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑘)) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
10928, 108sylan2b 493 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ (𝑘...𝑚) ≠ ∅) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
11027, 109pm2.61dane 2983 . . . . . . . . . . . 12 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
111110imp 444 . . . . . . . . . . 11 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ 𝑚 ∈ ℤ) ∧ ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
112111an4s 904 . . . . . . . . . 10 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ (𝑚 ∈ ℤ ∧ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏)) → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
113112expr 644 . . . . . . . . 9 ((((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑚 ∈ ℤ) → ((abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
114113ralimdva 3064 . . . . . . . 8 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ (abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → (∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
115114impancom 455 . . . . . . 7 (((𝑏 ∈ ℝ+𝑘 ∈ ℕ) ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
116115an32s 881 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ((abs‘Σ𝑛 ∈ (1...(𝑘 − 1))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
11717, 116mpd 15 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
118117ralrimiva 3068 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏))
119 breq2 4764 . . . . . 6 (𝑐 = (2 · 𝑏) → ((abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
1201192ralbidv 3091 . . . . 5 (𝑐 = (2 · 𝑏) → (∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)))
121120rspcev 3413 . . . 4 (((2 · 𝑏) ∈ ℝ+ ∧ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ (2 · 𝑏)) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1226, 118, 121syl2anc 696 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏) → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
123122rexlimiva 3130 . 2 (∃𝑏 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑏 → ∃𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
1242, 123ax-mp 5 1 𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wne 2896  wral 3014  wrex 3015  cun 3678  cin 3679  c0 4023   class class class wbr 4760  cmpt 4837  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  cn 11133  2c2 11183  cz 11490  cuz 11800  +crp 11946  ...cfz 12440  abscabs 14094  Σcsu 14536  ψcchp 24939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-xnn0 11477  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-o1 14341  df-lo1 14342  df-sum 14537  df-ef 14918  df-e 14919  df-sin 14920  df-cos 14921  df-pi 14923  df-dvds 15104  df-gcd 15340  df-prm 15509  df-pc 15665  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-cmp 21313  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423  df-cxp 24424  df-em 24839  df-cht 24943  df-vma 24944  df-chp 24945  df-ppi 24946
This theorem is referenced by:  pntpbnd  25397
  Copyright terms: Public domain W3C validator