![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntrlog2bndlem6a | Structured version Visualization version GIF version |
Description: Lemma for pntrlog2bndlem6 25492. (Contributed by Mario Carneiro, 7-Jun-2016.) |
Ref | Expression |
---|---|
pntsval.1 | ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
pntrlog2bnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntrlog2bnd.t | ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
pntrlog2bndlem5.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntrlog2bndlem5.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
pntrlog2bndlem6.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
pntrlog2bndlem6.2 | ⊢ (𝜑 → 1 ≤ 𝐴) |
Ref | Expression |
---|---|
pntrlog2bndlem6a | ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 12418 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
2 | 1 | adantl 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
3 | 1rp 12049 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+) |
5 | 4 | rpred 12085 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ) |
6 | eliooord 12446 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
7 | 6 | adantl 473 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
8 | 7 | simpld 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
9 | 5, 2, 8 | ltled 10397 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
10 | 2, 4, 9 | rpgecld 12124 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
11 | pntrlog2bndlem6.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ+) |
13 | pntrlog2bndlem6.2 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝐴) | |
14 | 11, 12, 13 | rpgecld 12124 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
15 | 14 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+) |
16 | 10, 15 | rpdivcld 12102 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+) |
17 | 16 | rprege0d 12092 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴))) |
18 | flge0nn0 12835 | . . . 4 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0) | |
19 | nn0p1nn 11544 | . . . 4 ⊢ ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) | |
20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) |
21 | nnuz 11936 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
22 | 20, 21 | syl6eleq 2849 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1)) |
23 | 16 | rpred 12085 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ) |
24 | 10 | rpge0d 12089 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
25 | 13 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴) |
26 | 4, 15, 2, 24, 25 | lediv2ad 12107 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1)) |
27 | 2 | recnd 10280 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ) |
28 | 27 | div1d 11005 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥) |
29 | 26, 28 | breqtrd 4830 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥) |
30 | flword2 12828 | . . 3 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) | |
31 | 23, 2, 29, 30 | syl3anc 1477 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) |
32 | fzsplit2 12579 | . 2 ⊢ ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1) ∧ (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | |
33 | 22, 31, 32 | syl2anc 696 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∪ cun 3713 ifcif 4230 class class class wbr 4804 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6814 ℝcr 10147 0cc0 10148 1c1 10149 + caddc 10151 · cmul 10153 +∞cpnf 10283 < clt 10286 ≤ cle 10287 − cmin 10478 / cdiv 10896 ℕcn 11232 ℕ0cn0 11504 ℤ≥cuz 11899 ℝ+crp 12045 (,)cioo 12388 ...cfz 12539 ⌊cfl 12805 abscabs 14193 Σcsu 14635 logclog 24521 Λcvma 25038 ψcchp 25039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-ioo 12392 df-fz 12540 df-fl 12807 |
This theorem is referenced by: pntrlog2bndlem6 25492 |
Copyright terms: Public domain | W3C validator |