MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem4 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem4 25250
Description: Lemma for pntrlog2bnd 25254. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
Assertion
Ref Expression
pntrlog2bndlem4 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥   𝑆,𝑛,𝑥   𝑅,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem4
Dummy variables 𝑐 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 12190 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 482 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 11821 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 10040 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 12218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 475 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 10170 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 11896 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1110rprege0d 11864 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
12 flge0nn0 12604 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
1311, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℕ0)
14 nn0p1nn 11317 . . . . . . . . . . . . . . . . . . . 20 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℕ)
1615nnrpd 11855 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℝ+)
1710, 16rpdivcld 11874 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ+)
18 pntrlog2bnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1918pntrval 25232 . . . . . . . . . . . . . . . . 17 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))))
2017, 19syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))))
212, 15nndivred 11054 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ)
22 2re 11075 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
2322a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
24 flltp1 12584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1))
252, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1))
2615nncnd 11021 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℂ)
2726mulid1d 10042 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · 1) = ((⌊‘𝑥) + 1))
2825, 27breqtrrd 4672 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) · 1))
292, 5, 16ltdivmuld 11908 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) · 1)))
3028, 29mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1)
31 1lt2 11179 . . . . . . . . . . . . . . . . . . . 20 1 < 2
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 2)
3321, 5, 23, 30, 32lttrd 10183 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2)
34 chpeq0 24914 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
3521, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
3633, 35mpbird 247 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0)
3736oveq1d 6650 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))) = (0 − (𝑥 / ((⌊‘𝑥) + 1))))
3820, 37eqtrd 2654 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = (0 − (𝑥 / ((⌊‘𝑥) + 1))))
3938fveq2d 6182 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) = (abs‘(0 − (𝑥 / ((⌊‘𝑥) + 1)))))
40 0red 10026 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ∈ ℝ)
4117rpge0d 11861 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 / ((⌊‘𝑥) + 1)))
4240, 21, 41abssuble0d 14152 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(0 − (𝑥 / ((⌊‘𝑥) + 1)))) = ((𝑥 / ((⌊‘𝑥) + 1)) − 0))
4321recnd 10053 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℂ)
4443subid1d 10366 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) − 0) = (𝑥 / ((⌊‘𝑥) + 1)))
4539, 42, 443eqtrd 2658 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) = (𝑥 / ((⌊‘𝑥) + 1)))
4613nn0red 11337 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℝ)
47 pntsval.1 . . . . . . . . . . . . . . . . 17 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
4847pntsval2 25246 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℝ → (𝑆‘(⌊‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
4946, 48syl 17 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(⌊‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
5013nn0cnd 11338 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℂ)
51 1cnd 10041 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
5250, 51pncand 10378 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
5352fveq2d 6182 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(((⌊‘𝑥) + 1) − 1)) = (𝑆‘(⌊‘𝑥)))
5447pntsval2 25246 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
552, 54syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
56 flidm 12593 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (⌊‘(⌊‘𝑥)) = (⌊‘𝑥))
572, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘(⌊‘𝑥)) = (⌊‘𝑥))
5857oveq2d 6651 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(⌊‘𝑥))) = (1...(⌊‘𝑥)))
5958sumeq1d 14412 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
6055, 59eqtr4d 2657 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
6149, 53, 603eqtr4d 2664 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(((⌊‘𝑥) + 1) − 1)) = (𝑆𝑥))
6252fveq2d 6182 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(((⌊‘𝑥) + 1) − 1)) = (𝑇‘(⌊‘𝑥)))
6362oveq2d 6651 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))) = (2 · (𝑇‘(⌊‘𝑥))))
6461, 63oveq12d 6653 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1)))) = ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))))
6545, 64oveq12d 6653 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
662recnd 10053 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
6766div1d 10778 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
6867fveq2d 6182 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) = (𝑅𝑥))
6918pntrf 25233 . . . . . . . . . . . . . . . . . . 19 𝑅:ℝ+⟶ℝ
7069ffvelrni 6344 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
7110, 70syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
7268, 71eqeltrd 2699 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) ∈ ℝ)
7372recnd 10053 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) ∈ ℂ)
7473abscld 14156 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / 1))) ∈ ℝ)
7574recnd 10053 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / 1))) ∈ ℂ)
7675mul01d 10220 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅‘(𝑥 / 1))) · 0) = 0)
7765, 76oveq12d 6653 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − 0))
7847pntsf 25243 . . . . . . . . . . . . . . . . 17 𝑆:ℝ⟶ℝ
7978ffvelrni 6344 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (𝑆𝑥) ∈ ℝ)
802, 79syl 17 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) ∈ ℝ)
81 pntrlog2bnd.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
82 relogcl 24303 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+ → (log‘𝑎) ∈ ℝ)
83 remulcl 10006 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ ∧ (log‘𝑎) ∈ ℝ) → (𝑎 · (log‘𝑎)) ∈ ℝ)
8482, 83sylan2 491 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (𝑎 · (log‘𝑎)) ∈ ℝ)
85 0red 10026 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ ¬ 𝑎 ∈ ℝ+) → 0 ∈ ℝ)
8684, 85ifclda 4111 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) ∈ ℝ)
8781, 86fmpti 6369 . . . . . . . . . . . . . . . . . 18 𝑇:ℝ⟶ℝ
8887ffvelrni 6344 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℝ → (𝑇‘(⌊‘𝑥)) ∈ ℝ)
8946, 88syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) ∈ ℝ)
9023, 89remulcld 10055 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ∈ ℝ)
9180, 90resubcld 10443 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) ∈ ℝ)
9221, 91remulcld 10055 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) ∈ ℝ)
9392recnd 10053 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) ∈ ℂ)
9493subid1d 10366 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − 0) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
9577, 94eqtrd 2654 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
962flcld 12582 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℤ)
97 fzval3 12520 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
9896, 97syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
9998eqcomd 2626 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
10010adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
101 elfznn 12355 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
102101adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
103102nnrpd 11855 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
104100, 103rpdivcld 11874 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
10569ffvelrni 6344 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
107106recnd 10053 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
108107abscld 14156 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
109108recnd 10053 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
1103a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
111103, 110rpaddcld 11872 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
112100, 111rpdivcld 11874 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
11369ffvelrni 6344 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
114112, 113syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
115114recnd 10053 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
116115abscld 14156 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℝ)
117116recnd 10053 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℂ)
118109, 117negsubdi2d 10393 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) = ((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))))
119118eqcomd 2626 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = -((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))))
120102nncnd 11021 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
121 1cnd 10041 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
122120, 121pncand 10378 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
123122fveq2d 6182 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘((𝑛 + 1) − 1)) = (𝑆𝑛))
124122fveq2d 6182 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘((𝑛 + 1) − 1)) = (𝑇𝑛))
125 rpre 11824 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
126 eleq1 2687 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑛 → (𝑎 ∈ ℝ+𝑛 ∈ ℝ+))
127 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑛𝑎 = 𝑛)
128 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
129127, 128oveq12d 6653 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛)))
130126, 129ifbieq1d 4100 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
131 ovex 6663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 · (log‘𝑛)) ∈ V
132 c0ex 10019 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
133131, 132ifex 4147 . . . . . . . . . . . . . . . . . . . . 21 if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) ∈ V
134130, 81, 133fvmpt 6269 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
135125, 134syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
136 iftrue 4083 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) = (𝑛 · (log‘𝑛)))
137135, 136eqtrd 2654 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ+ → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
138103, 137syl 17 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
139124, 138eqtrd 2654 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘((𝑛 + 1) − 1)) = (𝑛 · (log‘𝑛)))
140139oveq2d 6651 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘((𝑛 + 1) − 1))) = (2 · (𝑛 · (log‘𝑛))))
141123, 140oveq12d 6653 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) = ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))
142119, 141oveq12d 6653 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = (-((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
143108, 116resubcld 10443 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℝ)
144143recnd 10053 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℂ)
145102nnred 11020 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
14678ffvelrni 6344 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑆𝑛) ∈ ℝ)
147145, 146syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℝ)
14822a1i 11 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℝ)
149103relogcld 24350 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
150145, 149remulcld 10055 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (log‘𝑛)) ∈ ℝ)
151148, 150remulcld 10055 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑛 · (log‘𝑛))) ∈ ℝ)
152147, 151resubcld 10443 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℝ)
153152recnd 10053 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℂ)
154144, 153mulneg1d 10468 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (-((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = -(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
155142, 154eqtrd 2654 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = -(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
15699, 155sumeq12rdv 14419 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
157 fzfid 12755 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
158143, 152remulcld 10055 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
159158recnd 10053 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
160157, 159fsumneg 14500 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))-(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
161156, 160eqtrd 2654 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
16295, 161oveq12d 6653 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
163 oveq2 6643 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛))
164163fveq2d 6182 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / 𝑛)))
165164fveq2d 6182 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 𝑛))))
166 oveq1 6642 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
167166fveq2d 6182 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑆‘(𝑚 − 1)) = (𝑆‘(𝑛 − 1)))
168166fveq2d 6182 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑇‘(𝑚 − 1)) = (𝑇‘(𝑛 − 1)))
169168oveq2d 6651 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘(𝑛 − 1))))
170167, 169oveq12d 6653 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))
171165, 170jca 554 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 𝑛))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))))
172 oveq2 6643 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1)))
173172fveq2d 6182 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / (𝑛 + 1))))
174173fveq2d 6182 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))
175 oveq1 6642 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
176175fveq2d 6182 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (𝑆‘(𝑚 − 1)) = (𝑆‘((𝑛 + 1) − 1)))
177175fveq2d 6182 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑇‘(𝑚 − 1)) = (𝑇‘((𝑛 + 1) − 1)))
178177oveq2d 6651 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘((𝑛 + 1) − 1))))
179176, 178oveq12d 6653 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))
180174, 179jca 554 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))))
181 oveq2 6643 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1))
182181fveq2d 6182 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / 1)))
183182fveq2d 6182 . . . . . . . . . . . 12 (𝑚 = 1 → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 1))))
184 oveq1 6642 . . . . . . . . . . . . . . . . 17 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
185 1m1e0 11074 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
186184, 185syl6eq 2670 . . . . . . . . . . . . . . . 16 (𝑚 = 1 → (𝑚 − 1) = 0)
187186fveq2d 6182 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (𝑆‘(𝑚 − 1)) = (𝑆‘0))
188 0re 10025 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
189 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 0 → (⌊‘𝑎) = (⌊‘0))
190 0z 11373 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℤ
191 flid 12592 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ ℤ → (⌊‘0) = 0)
192190, 191ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (⌊‘0) = 0
193189, 192syl6eq 2670 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 0 → (⌊‘𝑎) = 0)
194193oveq2d 6651 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → (1...(⌊‘𝑎)) = (1...0))
195 fz10 12347 . . . . . . . . . . . . . . . . . . . 20 (1...0) = ∅
196194, 195syl6eq 2670 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → (1...(⌊‘𝑎)) = ∅)
197196sumeq1d 14412 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑖 ∈ ∅ ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
198 sum0 14433 . . . . . . . . . . . . . . . . . 18 Σ𝑖 ∈ ∅ ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = 0
199197, 198syl6eq 2670 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = 0)
200199, 47, 132fvmpt 6269 . . . . . . . . . . . . . . . 16 (0 ∈ ℝ → (𝑆‘0) = 0)
201188, 200ax-mp 5 . . . . . . . . . . . . . . 15 (𝑆‘0) = 0
202187, 201syl6eq 2670 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑆‘(𝑚 − 1)) = 0)
203186fveq2d 6182 . . . . . . . . . . . . . . . . 17 (𝑚 = 1 → (𝑇‘(𝑚 − 1)) = (𝑇‘0))
204 rpne0 11833 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+𝑎 ≠ 0)
205204necon2bi 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → ¬ 𝑎 ∈ ℝ+)
206205iffalsed 4088 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
207206, 81, 132fvmpt 6269 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (𝑇‘0) = 0)
208188, 207ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘0) = 0
209203, 208syl6eq 2670 . . . . . . . . . . . . . . . 16 (𝑚 = 1 → (𝑇‘(𝑚 − 1)) = 0)
210209oveq2d 6651 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (2 · (𝑇‘(𝑚 − 1))) = (2 · 0))
211 2t0e0 11168 . . . . . . . . . . . . . . 15 (2 · 0) = 0
212210, 211syl6eq 2670 . . . . . . . . . . . . . 14 (𝑚 = 1 → (2 · (𝑇‘(𝑚 − 1))) = 0)
213202, 212oveq12d 6653 . . . . . . . . . . . . 13 (𝑚 = 1 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = (0 − 0))
214 0m0e0 11115 . . . . . . . . . . . . 13 (0 − 0) = 0
215213, 214syl6eq 2670 . . . . . . . . . . . 12 (𝑚 = 1 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = 0)
216183, 215jca 554 . . . . . . . . . . 11 (𝑚 = 1 → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 1))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = 0))
217 oveq2 6643 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1)))
218217fveq2d 6182 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))))
219218fveq2d 6182 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))))
220 oveq1 6642 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 − 1) = (((⌊‘𝑥) + 1) − 1))
221220fveq2d 6182 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (𝑆‘(𝑚 − 1)) = (𝑆‘(((⌊‘𝑥) + 1) − 1)))
222220fveq2d 6182 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑇‘(𝑚 − 1)) = (𝑇‘(((⌊‘𝑥) + 1) − 1)))
223222oveq2d 6651 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))
224221, 223oveq12d 6653 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1)))))
225219, 224jca 554 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))))
226 nnuz 11708 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
22715, 226syl6eleq 2709 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
22810adantr 481 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑥 ∈ ℝ+)
229 elfznn 12355 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
230229adantl 482 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
231230nnrpd 11855 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ+)
232228, 231rpdivcld 11874 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑥 / 𝑚) ∈ ℝ+)
23369ffvelrni 6344 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑚)) ∈ ℝ)
234232, 233syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑅‘(𝑥 / 𝑚)) ∈ ℝ)
235234recnd 10053 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑅‘(𝑥 / 𝑚)) ∈ ℂ)
236235abscld 14156 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (abs‘(𝑅‘(𝑥 / 𝑚))) ∈ ℝ)
237236recnd 10053 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (abs‘(𝑅‘(𝑥 / 𝑚))) ∈ ℂ)
238230nnred 11020 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
239 1red 10040 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 1 ∈ ℝ)
240238, 239resubcld 10443 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
24178ffvelrni 6344 . . . . . . . . . . . . . 14 ((𝑚 − 1) ∈ ℝ → (𝑆‘(𝑚 − 1)) ∈ ℝ)
242240, 241syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑆‘(𝑚 − 1)) ∈ ℝ)
24322a1i 11 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 2 ∈ ℝ)
24487ffvelrni 6344 . . . . . . . . . . . . . . 15 ((𝑚 − 1) ∈ ℝ → (𝑇‘(𝑚 − 1)) ∈ ℝ)
245240, 244syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑇‘(𝑚 − 1)) ∈ ℝ)
246243, 245remulcld 10055 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (2 · (𝑇‘(𝑚 − 1))) ∈ ℝ)
247242, 246resubcld 10443 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) ∈ ℝ)
248247recnd 10053 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) ∈ ℂ)
249171, 180, 216, 225, 227, 237, 248fsumparts 14519 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))))
250147recnd 10053 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℂ)
25187ffvelrni 6344 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑇𝑛) ∈ ℝ)
252145, 251syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℝ)
253148, 252remulcld 10055 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇𝑛)) ∈ ℝ)
254253recnd 10053 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇𝑛)) ∈ ℂ)
255 1red 10040 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
256145, 255resubcld 10443 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
25778ffvelrni 6344 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ℝ → (𝑆‘(𝑛 − 1)) ∈ ℝ)
258256, 257syl 17 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℝ)
259258recnd 10053 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℂ)
26087ffvelrni 6344 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) ∈ ℝ)
261256, 260syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℝ)
262148, 261remulcld 10055 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘(𝑛 − 1))) ∈ ℝ)
263262recnd 10053 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘(𝑛 − 1))) ∈ ℂ)
264250, 254, 259, 263sub4d 10426 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (2 · (𝑇𝑛))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1))))))
265124oveq2d 6651 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘((𝑛 + 1) − 1))) = (2 · (𝑇𝑛)))
266123, 265oveq12d 6653 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) = ((𝑆𝑛) − (2 · (𝑇𝑛))))
267266oveq1d 6650 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (2 · (𝑇𝑛))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))))
268 2cnd 11078 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
269252recnd 10053 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℂ)
270261recnd 10053 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℂ)
271268, 269, 270subdid 10471 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) = ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1)))))
272271oveq2d 6651 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1))))))
273264, 267, 2723eqtr4d 2664 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
274273oveq2d 6651 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
27599, 274sumeq12rdv 14419 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
276249, 275eqtr3d 2656 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
277157, 159fsumcl 14445 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
27893, 277subnegd 10384 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
279162, 276, 2783eqtr3rd 2663 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
28010relogcld 24350 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
281280recnd 10053 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
28266, 281mulcomd 10046 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) = ((log‘𝑥) · 𝑥))
283279, 282oveq12d 6653 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / ((log‘𝑥) · 𝑥)))
284147, 258resubcld 10443 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℝ)
285252, 261resubcld 10443 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℝ)
286148, 285remulcld 10055 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
287284, 286resubcld 10443 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℝ)
288108, 287remulcld 10055 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
289157, 288fsumrecl 14446 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
290289recnd 10053 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℂ)
2912, 8rplogcld 24356 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
292291rpne0d 11862 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
29310rpne0d 11862 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
294290, 281, 66, 292, 293divdiv1d 10817 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / ((log‘𝑥) · 𝑥)))
295283, 294eqtr4d 2657 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥))
296295oveq2d 6651 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥)))
29771recnd 10053 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
298297abscld 14156 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
299298, 280remulcld 10055 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
300108, 284remulcld 10055 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
301157, 300fsumrecl 14446 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
302301, 291rerpdivcld 11888 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℝ)
303299, 302resubcld 10443 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℝ)
304303recnd 10053 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℂ)
305290, 281, 292divcld 10786 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) ∈ ℂ)
306304, 305, 66, 293divdird 10824 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥)))
307299recnd 10053 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
308302recnd 10053 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℂ)
309307, 308, 305subsubd 10405 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))))
310 2cnd 11078 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
311269, 270subcld 10377 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℂ)
312109, 311mulcld 10045 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
313157, 310, 312fsummulc2 14497 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
314284recnd 10053 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℂ)
315268, 311mulcld 10045 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
316314, 315nncand 10382 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) = (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))
317316oveq2d 6651 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
318287recnd 10053 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℂ)
319109, 314, 318subdid 10471 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))))
320109, 268, 311mul12d 10230 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = (2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
321317, 319, 3203eqtr3d 2662 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
322321sumeq2dv 14414 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
323300recnd 10053 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℂ)
324288recnd 10053 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℂ)
325157, 323, 324fsumsub 14501 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))))
326313, 322, 3253eqtr2rd 2661 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
327326oveq1d 6650 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) / (log‘𝑥)) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) / (log‘𝑥)))
328301recnd 10053 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℂ)
329328, 290, 281, 292divsubdird 10825 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))))
330108, 285remulcld 10055 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
331157, 330fsumrecl 14446 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
332331recnd 10053 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
333310, 332, 281, 292div23d 10823 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
334327, 329, 3333eqtr3d 2662 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
335334oveq2d 6651 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
336309, 335eqtr3d 2656 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
337336oveq1d 6650 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
338296, 306, 3373eqtr2d 2660 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
339338mpteq2dva 4735 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)))
340303, 10rerpdivcld 11888 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ∈ ℝ)
341157, 158fsumrecl 14446 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
34292, 341readdcld 10054 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
34310, 291rpmulcld 11873 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
344342, 343rerpdivcld 11888 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
34547, 18pntrlog2bndlem1 25247 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
346345a1i 11 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1))
347343rpcnd 11859 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
348343rpne0d 11862 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
34993, 277, 347, 348divdird 10824 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
35091recnd 10053 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) ∈ ℂ)
35143, 350, 347, 348divassd 10821 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) = ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))))
352351oveq1d 6650 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) = (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
353349, 352eqtrd 2654 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
354353mpteq2dva 4735 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))))))
35591, 343rerpdivcld 11888 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
35621, 355remulcld 10055 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
357341, 343rerpdivcld 11888 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
358 ioossre 12220 . . . . . . . . 9 (1(,)+∞) ⊆ ℝ
359358a1i 11 . . . . . . . 8 (⊤ → (1(,)+∞) ⊆ ℝ)
360 1red 10040 . . . . . . . 8 (⊤ → 1 ∈ ℝ)
36121, 5, 30ltled 10170 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ≤ 1)
362361adantrr 752 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (𝑥 / ((⌊‘𝑥) + 1)) ≤ 1)
363359, 21, 360, 360, 362ello1d 14235 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (𝑥 / ((⌊‘𝑥) + 1))) ∈ ≤𝑂(1))
36480recnd 10053 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) ∈ ℂ)
36590recnd 10053 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ∈ ℂ)
366364, 365, 347, 348divsubdird 10825 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))) = (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))))
367366mpteq2dva 4735 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))))
36880, 343rerpdivcld 11888 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / (𝑥 · (log‘𝑥))) ∈ ℝ)
36990, 343rerpdivcld 11888 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
370 2cnd 11078 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℂ)
371 o1const 14331 . . . . . . . . . . . 12 (((1(,)+∞) ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
372358, 370, 371sylancr 694 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
373368recnd 10053 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / (𝑥 · (log‘𝑥))) ∈ ℂ)
37480, 10rerpdivcld 11888 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / 𝑥) ∈ ℝ)
375374recnd 10053 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / 𝑥) ∈ ℂ)
376310, 281mulcld 10045 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℂ)
377375, 376, 281, 292divsubdird 10825 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) / (log‘𝑥)) = ((((𝑆𝑥) / 𝑥) / (log‘𝑥)) − ((2 · (log‘𝑥)) / (log‘𝑥))))
37823, 280remulcld 10055 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
379374, 378resubcld 10443 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
380379recnd 10053 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
381380, 281, 292divrecd 10789 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) / (log‘𝑥)) = ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥))))
382364, 66, 281, 293, 292divdiv1d 10817 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) / (log‘𝑥)) = ((𝑆𝑥) / (𝑥 · (log‘𝑥))))
383310, 281, 292divcan4d 10792 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (log‘𝑥)) / (log‘𝑥)) = 2)
384382, 383oveq12d 6653 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) / (log‘𝑥)) − ((2 · (log‘𝑥)) / (log‘𝑥))) = (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2))
385377, 381, 3843eqtr3rd 2663 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2) = ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥))))
386385mpteq2dva 4735 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2)) = (𝑥 ∈ (1(,)+∞) ↦ ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥)))))
3875, 291rerpdivcld 11888 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
38810ex 450 . . . . . . . . . . . . . . . 16 (⊤ → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
389388ssrdv 3601 . . . . . . . . . . . . . . 15 (⊤ → (1(,)+∞) ⊆ ℝ+)
39047selbergs 25244 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
391390a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ℝ+ ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
392389, 391o1res2 14275 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
393 divlogrlim 24362 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
394 rlimo1 14328 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
395393, 394mp1i 13 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
396379, 387, 392, 395o1mul2 14336 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
397386, 396eqeltrd 2699 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2)) ∈ 𝑂(1))
398373, 310, 397o1dif 14341 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((𝑆𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1)))
399372, 398mpbird 247 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((𝑆𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
40022a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℝ)
4012, 280remulcld 10055 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
402 2rp 11822 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
403402a1i 11 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
404403rpge0d 11861 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
405 flge1nn 12605 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
4062, 9, 405syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℕ)
407406nnrpd 11855 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℝ+)
408 rpre 11824 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
409 eleq1 2687 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (⌊‘𝑥) → (𝑎 ∈ ℝ+ ↔ (⌊‘𝑥) ∈ ℝ+))
410 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (⌊‘𝑥) → 𝑎 = (⌊‘𝑥))
411 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (⌊‘𝑥) → (log‘𝑎) = (log‘(⌊‘𝑥)))
412410, 411oveq12d 6653 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (⌊‘𝑥) → (𝑎 · (log‘𝑎)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
413409, 412ifbieq1d 4100 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (⌊‘𝑥) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
414 ovex 6663 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑥) · (log‘(⌊‘𝑥))) ∈ V
415414, 132ifex 4147 . . . . . . . . . . . . . . . . . . . 20 if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0) ∈ V
416413, 81, 415fvmpt 6269 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ ℝ → (𝑇‘(⌊‘𝑥)) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
417408, 416syl 17 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑥) ∈ ℝ+ → (𝑇‘(⌊‘𝑥)) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
418 iftrue 4083 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑥) ∈ ℝ+ → if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
419417, 418eqtrd 2654 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℝ+ → (𝑇‘(⌊‘𝑥)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
420407, 419syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
421407relogcld 24350 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘(⌊‘𝑥)) ∈ ℝ)
42213nn0ge0d 11339 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (⌊‘𝑥))
423406nnge1d 11048 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ (⌊‘𝑥))
42446, 423logge0d 24357 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (log‘(⌊‘𝑥)))
425 flle 12583 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
4262, 425syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ≤ 𝑥)
427407, 10logled 24354 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) ≤ 𝑥 ↔ (log‘(⌊‘𝑥)) ≤ (log‘𝑥)))
428426, 427mpbid 222 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘(⌊‘𝑥)) ≤ (log‘𝑥))
42946, 2, 421, 280, 422, 424, 426, 428lemul12ad 10951 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) · (log‘(⌊‘𝑥))) ≤ (𝑥 · (log‘𝑥)))
430420, 429eqbrtrd 4666 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) ≤ (𝑥 · (log‘𝑥)))
43189, 401, 23, 404, 430lemul2ad 10949 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ≤ (2 · (𝑥 · (log‘𝑥))))
43290, 23, 343ledivmul2d 11911 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2 ↔ (2 · (𝑇‘(⌊‘𝑥))) ≤ (2 · (𝑥 · (log‘𝑥)))))
433431, 432mpbird 247 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2)
434433adantrr 752 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2)
435359, 369, 360, 400, 434ello1d 14235 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
436 0red 10026 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℝ)
43746, 421, 422, 424mulge0d 10589 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
438437, 420breqtrrd 4672 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑇‘(⌊‘𝑥)))
43923, 89, 404, 438mulge0d 10589 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 · (𝑇‘(⌊‘𝑥))))
44090, 343, 439divge0d 11897 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))
441369, 436, 440o1lo12 14250 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1)))
442435, 441mpbird 247 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
443368, 369, 399, 442o1sub2 14337 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
444367, 443eqeltrd 2699 . . . . . . . 8 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
445355, 444o1lo1d 14251 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
44621, 355, 363, 445, 41lo1mul 14339 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
44747selbergsb 25245 . . . . . . . 8 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐
448 simpl 473 . . . . . . . . . 10 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → 𝑐 ∈ ℝ+)
449 simpr 477 . . . . . . . . . 10 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐)
45047, 18, 448, 449pntrlog2bndlem3 25249 . . . . . . . . 9 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
451450rexlimiva 3024 . . . . . . . 8 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
452447, 451mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
453357, 452o1lo1d 14251 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
454356, 357, 446, 453lo1add 14338 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
455354, 454eqeltrd 2699 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
456340, 344, 346, 455lo1add 14338 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
457339, 456eqeltrrd 2700 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1))
458457trud 1491 1 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1481  wtru 1482  wcel 1988  wral 2909  wrex 2910  {crab 2913  wss 3567  c0 3907  ifcif 4077   class class class wbr 4644  cmpt 4720  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  +∞cpnf 10056   < clt 10059  cle 10060  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  2c2 11055  0cn0 11277  cz 11362  cuz 11672  +crp 11817  (,)cioo 12160  [,)cico 12162  ...cfz 12311  ..^cfzo 12449  cfl 12574  abscabs 13955  𝑟 crli 14197  𝑂(1)co1 14198  ≤𝑂(1)clo1 14199  Σcsu 14397  cdvds 14964  logclog 24282  Λcvma 24799  ψcchp 24800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-o1 14202  df-lo1 14203  df-sum 14398  df-ef 14779  df-e 14780  df-sin 14781  df-cos 14782  df-pi 14784  df-dvds 14965  df-gcd 15198  df-prm 15367  df-pc 15523  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-cmp 21171  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-log 24284  df-cxp 24285  df-em 24700  df-cht 24804  df-vma 24805  df-chp 24806  df-ppi 24807  df-mu 24808
This theorem is referenced by:  pntrlog2bndlem5  25251
  Copyright terms: Public domain W3C validator