MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd Structured version   Visualization version   GIF version

Theorem pntpbnd 25468
Description: Lemma for pnt 25494. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntpbnd 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Distinct variable groups:   𝑘,𝑎,𝑛,𝑥,𝑦   𝑒,𝑐,𝑘,𝑛,𝑥,𝑦,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntpbnd
Dummy variables 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntibnd.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd2 25447 . 2 𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑
3 simpl 474 . . . . 5 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → 𝑑 ∈ ℝ+)
4 2rp 12022 . . . . 5 2 ∈ ℝ+
5 rpaddcl 12039 . . . . 5 ((𝑑 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝑑 + 2) ∈ ℝ+)
63, 4, 5sylancl 697 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → (𝑑 + 2) ∈ ℝ+)
7 2re 11274 . . . . . . . 8 2 ∈ ℝ
8 elioore 12390 . . . . . . . . . 10 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
98adantl 473 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ)
10 eliooord 12418 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
1110adantl 473 . . . . . . . . . 10 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (0 < 𝑒𝑒 < 1))
1211simpld 477 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 0 < 𝑒)
139, 12elrpd 12054 . . . . . . . 8 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ+)
14 rerpdivcl 12046 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → (2 / 𝑒) ∈ ℝ)
157, 13, 14sylancr 698 . . . . . . 7 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (2 / 𝑒) ∈ ℝ)
1615rpefcld 15026 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (exp‘(2 / 𝑒)) ∈ ℝ+)
17 simpllr 817 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑒 ∈ (0(,)1))
18 eqid 2752 . . . . . . . . 9 (exp‘(2 / 𝑒)) = (exp‘(2 / 𝑒))
19 simplrr 820 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))
20 simp-4l 825 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑑 ∈ ℝ+)
21 simp-4r 827 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑)
22 eqid 2752 . . . . . . . . 9 (𝑑 + 2) = (𝑑 + 2)
23 simplrl 819 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
24 simpr 479 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
251, 17, 18, 19, 20, 21, 22, 23, 24pntpbnd2 25467 . . . . . . . 8 ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
26 iman 439 . . . . . . . 8 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) ↔ ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
2725, 26mpbir 221 . . . . . . 7 ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
2827ralrimivva 3101 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
29 oveq1 6812 . . . . . . . . 9 (𝑥 = (exp‘(2 / 𝑒)) → (𝑥(,)+∞) = ((exp‘(2 / 𝑒))(,)+∞))
3029raleqdv 3275 . . . . . . . 8 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3130ralbidv 3116 . . . . . . 7 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3231rspcev 3441 . . . . . 6 (((exp‘(2 / 𝑒)) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3316, 28, 32syl2anc 696 . . . . 5 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3433ralrimiva 3096 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
35 oveq1 6812 . . . . . . . . . 10 (𝑐 = (𝑑 + 2) → (𝑐 / 𝑒) = ((𝑑 + 2) / 𝑒))
3635fveq2d 6348 . . . . . . . . 9 (𝑐 = (𝑑 + 2) → (exp‘(𝑐 / 𝑒)) = (exp‘((𝑑 + 2) / 𝑒)))
3736oveq1d 6820 . . . . . . . 8 (𝑐 = (𝑑 + 2) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
3837raleqdv 3275 . . . . . . 7 (𝑐 = (𝑑 + 2) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3938rexbidv 3182 . . . . . 6 (𝑐 = (𝑑 + 2) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
4039ralbidv 3116 . . . . 5 (𝑐 = (𝑑 + 2) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
4140rspcev 3441 . . . 4 (((𝑑 + 2) ∈ ℝ+ ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
426, 34, 41syl2anc 696 . . 3 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
4342rexlimiva 3158 . 2 (∃𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑 → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
442, 43ax-mp 5 1 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1624  wcel 2131  wral 3042  wrex 3043   class class class wbr 4796  cmpt 4873  cfv 6041  (class class class)co 6805  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125  +∞cpnf 10255   < clt 10258  cle 10259  cmin 10450   / cdiv 10868  cn 11204  2c2 11254  cz 11561  +crp 12017  (,)cioo 12360  [,)cico 12362  ...cfz 12511  abscabs 14165  Σcsu 14607  expce 14983  ψcchp 25010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-xnn0 11548  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-o1 14412  df-lo1 14413  df-sum 14608  df-ef 14989  df-e 14990  df-sin 14991  df-cos 14992  df-pi 14994  df-dvds 15175  df-gcd 15411  df-prm 15580  df-pc 15736  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cn 21225  df-cnp 21226  df-haus 21313  df-cmp 21384  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-xms 22318  df-ms 22319  df-tms 22320  df-cncf 22874  df-limc 23821  df-dv 23822  df-log 24494  df-cxp 24495  df-em 24910  df-cht 25014  df-vma 25015  df-chp 25016  df-ppi 25017
This theorem is referenced by:  pntibnd  25473
  Copyright terms: Public domain W3C validator