MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemr Structured version   Visualization version   GIF version

Theorem pntlemr 25512
Description: Lemma for pntlemj 25513. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemr (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemr
StepHypRef Expression
1 pntlem1.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . . . . 13 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . . . . 13 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
71, 2, 3, 4, 5, 6pntlemd 25504 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
87simp1d 1137 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
9 pntlem1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ+)
10 pntlem1.u2 . . . . . . . . . . . . 13 (𝜑𝑈𝐴)
11 pntlem1.e . . . . . . . . . . . . 13 𝐸 = (𝑈 / 𝐷)
12 pntlem1.k . . . . . . . . . . . . 13 𝐾 = (exp‘(𝐵 / 𝐸))
131, 2, 3, 4, 5, 6, 9, 10, 11, 12pntlemc 25505 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1413simp1d 1137 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
158, 14rpmulcld 12102 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
16 4re 11310 . . . . . . . . . . 11 4 ∈ ℝ
17 4pos 11329 . . . . . . . . . . 11 0 < 4
1816, 17elrpii 12049 . . . . . . . . . 10 4 ∈ ℝ+
19 rpdivcl 12070 . . . . . . . . . 10 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2015, 18, 19sylancl 697 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2120rpred 12086 . . . . . . . 8 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ)
22 pntlem1.y . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
23 pntlem1.x . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
24 pntlem1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . . . 12 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑊[,)+∞))
271, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26pntlemb 25507 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2827simp1d 1137 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
29 pntlem1.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℝ+)
3028, 29rpdivcld 12103 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
3130rpred 12086 . . . . . . . 8 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
3221, 31remulcld 10283 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ)
33 pntlem1.i . . . . . . . . . 10 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
34 fzfid 12987 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3533, 34syl5eqel 2844 . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
36 hashcl 13360 . . . . . . . . 9 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
3735, 36syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐼) ∈ ℕ0)
3837nn0red 11565 . . . . . . 7 (𝜑 → (♯‘𝐼) ∈ ℝ)
3932recnd 10281 . . . . . . . . . . . 12 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℂ)
40 1rp 12050 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
41 rpaddcl 12068 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4240, 15, 41sylancr 698 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4342, 29rpmulcld 12102 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
4428, 43rpdivcld 12103 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
4544rpred 12086 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
46 reflcl 12812 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4847recnd 10281 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℂ)
49 1cnd 10269 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5039, 48, 49add32d 10476 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) = (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
51 peano2re 10422 . . . . . . . . . . . . . 14 ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5232, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5352, 47readdcld 10282 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
54 reflcl 12812 . . . . . . . . . . . . . 14 ((𝑍 / 𝑉) ∈ ℝ → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
5531, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
56 peano2re 10422 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / 𝑉)) ∈ ℝ → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5815rphalfcld 12098 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ+)
5958, 30rpmulcld 12102 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ+)
6059rpred 12086 . . . . . . . . . . . . . 14 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ)
6160, 45readdcld 10282 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
62 rpdivcl 12070 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6318, 15, 62sylancr 698 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6463rpred 12086 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ)
6528rpsqrtcld 14370 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ∈ ℝ+)
6665rpred 12086 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ∈ ℝ)
6727simp3d 1139 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6867simp1d 1137 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (√‘𝑍))
6943rpred 12086 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
7013simp2d 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℝ+)
71 pntlem1.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ (𝑀..^𝑁))
72 elfzoelz 12685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐽 ∈ ℤ)
7473peano2zd 11698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ ℤ)
7570, 74rpexpcld 13247 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
7675rpred 12086 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
77 pntlem1.V . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
7877simpld 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
7978simprd 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
8070rpcnd 12088 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐾 ∈ ℂ)
8170, 73rpexpcld 13247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐾𝐽) ∈ ℝ+)
8281rpcnd 12088 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐾𝐽) ∈ ℂ)
8380, 82mulcomd 10274 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
84 pntlem1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
85 pntlem1.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
861, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 84, 85pntlemg 25508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
8786simp1d 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑀 ∈ ℕ)
88 elfzouz 12689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
8971, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐽 ∈ (ℤ𝑀))
90 eluznn 11972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
9187, 89, 90syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐽 ∈ ℕ)
9291nnnn0d 11564 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ ℕ0)
9380, 92expp1d 13224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
9483, 93eqtr4d 2798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
9579, 94breqtrd 4831 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
9669, 76, 95ltled 10398 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
97 fzofzp1 12780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
9871, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
991, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 84, 85pntlemh 25509 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
10098, 99mpdan 705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
101100simprd 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
10269, 76, 66, 96, 101letrd 10407 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
10369, 66, 65lemul2d 12130 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
104102, 103mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
10528rprege0d 12093 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
106 remsqsqrt 14217 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
108104, 107breqtrd 4831 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
10928rpred 12086 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑍 ∈ ℝ)
11066, 109, 43lemuldivd 12135 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
111108, 110mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
11229rpcnd 12088 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑉 ∈ ℂ)
113112mulid2d 10271 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) = 𝑉)
114 1red 10268 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℝ)
11542rpred 12086 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
116 1re 10252 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
117 ltaddrp 12081 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℝ ∧ (𝐿 · 𝐸) ∈ ℝ+) → 1 < (1 + (𝐿 · 𝐸)))
118116, 15, 117sylancr 698 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < (1 + (𝐿 · 𝐸)))
119114, 115, 29, 118ltmul1dd 12141 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) < ((1 + (𝐿 · 𝐸)) · 𝑉))
120113, 119eqbrtrrd 4829 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉))
12129, 43, 28ltdiv2d 12109 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉) ↔ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉)))
122120, 121mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉))
12345, 31, 122ltled 10398 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉))
12466, 45, 31, 111, 123letrd 10407 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑉))
12564, 66, 31, 68, 124letrd 10407 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (𝑍 / 𝑉))
12664, 31, 31, 125leadd2dd 10855 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
12730rpcnd 12088 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑍 / 𝑉) ∈ ℂ)
1281272timesd 11488 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) = ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
129126, 128breqtrrd 4833 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)))
13031, 64readdcld 10282 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ∈ ℝ)
131 2re 11303 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
132 remulcl 10234 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ) → (2 · (𝑍 / 𝑉)) ∈ ℝ)
133131, 31, 132sylancr 698 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) ∈ ℝ)
134130, 133, 20lemul2d 12130 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉)))))
135129, 134mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
13620rpcnd 12088 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℂ)
13763rpcnd 12088 . . . . . . . . . . . . . . . . 17 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℂ)
138136, 127, 137adddid 10277 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))))
13915rpcnne0d 12095 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0))
140 rpcnne0 12064 . . . . . . . . . . . . . . . . . . 19 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
14118, 140mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
142 divcan6 10945 . . . . . . . . . . . . . . . . . 18 ((((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
143139, 141, 142syl2anc 696 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
144143oveq2d 6831 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
145138, 144eqtrd 2795 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
146 2cnd 11306 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
147136, 146, 127mulassd 10276 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
14815rpcnd 12088 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
149 2rp 12051 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ+
150 rpcnne0 12064 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
151149, 150mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
152 divdiv1 10949 . . . . . . . . . . . . . . . . . . . . 21 (((𝐿 · 𝐸) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
153148, 151, 151, 152syl3anc 1477 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
154 2t2e4 11390 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
155154oveq2i 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 · 𝐸) / (2 · 2)) = ((𝐿 · 𝐸) / 4)
156153, 155syl6req 2812 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 4) = (((𝐿 · 𝐸) / 2) / 2))
157156oveq1d 6830 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((((𝐿 · 𝐸) / 2) / 2) · 2))
158148halfcld 11490 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℂ)
159151simprd 482 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ≠ 0)
160158, 146, 159divcan1d 11015 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((𝐿 · 𝐸) / 2) / 2) · 2) = ((𝐿 · 𝐸) / 2))
161157, 160eqtrd 2795 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((𝐿 · 𝐸) / 2))
162161oveq1d 6830 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
163147, 162eqtr3d 2797 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
164135, 145, 1633brtr3d 4836 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ≤ (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
165 flle 12815 . . . . . . . . . . . . . . 15 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16645, 165syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16752, 47, 60, 45, 164, 166le2addd 10859 . . . . . . . . . . . . 13 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ≤ ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
16858rpred 12086 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ)
16942rprecred 12097 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℝ)
170168, 169readdcld 10282 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) ∈ ℝ)
17115rpred 12086 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
17214rpred 12086 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 ∈ ℝ)
1738rpred 12086 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 ∈ ℝ)
174 eliooord 12447 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
1754, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0 < 𝐿𝐿 < 1))
176175simprd 482 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 < 1)
177173, 114, 14, 176ltmul1dd 12141 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐿 · 𝐸) < (1 · 𝐸))
17814rpcnd 12088 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ ℂ)
179178mulid2d 10271 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 · 𝐸) = 𝐸)
180177, 179breqtrd 4831 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) < 𝐸)
18113simp3d 1139 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
182181simp1d 1137 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ (0(,)1))
183 eliooord 12447 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
184182, 183syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 < 𝐸𝐸 < 1))
185184simprd 482 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 < 1)
186171, 172, 114, 180, 185lttrd 10411 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) < 1)
187171, 114, 114, 186ltadd2dd 10409 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
188 df-2 11292 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
189187, 188syl6breqr 4847 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
19042rpregt0d 12092 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))))
191131a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
192 2pos 11325 . . . . . . . . . . . . . . . . . . . 20 0 < 2
193192a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
19415rpregt0d 12092 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸)))
195 ltdiv2 11122 . . . . . . . . . . . . . . . . . . 19 ((((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))) ∧ (2 ∈ ℝ ∧ 0 < 2) ∧ ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸))) → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
196190, 191, 193, 194, 195syl121anc 1482 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
197189, 196mpbid 222 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
19842rpcnd 12088 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℂ)
19942rpcnne0d 12095 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0))
200 divsubdir 10934 . . . . . . . . . . . . . . . . . . 19 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
201198, 49, 199, 200syl3anc 1477 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
202 ax-1cn 10207 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
203 pncan2 10501 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
204202, 148, 203sylancr 698 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
205204oveq1d 6830 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
206 divid 10927 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
207199, 206syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
208207oveq1d 6830 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
209201, 205, 2083eqtr3d 2803 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
210197, 209breqtrd 4831 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸)))))
211168, 169, 114ltaddsubd 10840 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1 ↔ ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸))))))
212210, 211mpbird 247 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1)
213170, 114, 30, 212ltmul1dd 12141 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) < (1 · (𝑍 / 𝑉)))
214 reccl 10905 . . . . . . . . . . . . . . . . 17 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
215199, 214syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
216158, 215, 127adddird 10278 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
217198, 112mulcomd 10274 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) = (𝑉 · (1 + (𝐿 · 𝐸))))
218217oveq2d 6831 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
21928rpcnd 12088 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
22029rpcnne0d 12095 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0))
221 divdiv1 10949 . . . . . . . . . . . . . . . . . 18 ((𝑍 ∈ ℂ ∧ (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
222219, 220, 199, 221syl3anc 1477 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
22342rpne0d 12091 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≠ 0)
224127, 198, 223divrec2d 11018 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
225218, 222, 2243eqtr2d 2801 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
226225oveq2d 6831 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
227216, 226eqtr4d 2798 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
228127mulid2d 10271 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝑍 / 𝑉)) = (𝑍 / 𝑉))
229213, 227, 2283brtr3d 4836 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) < (𝑍 / 𝑉))
23053, 61, 31, 167, 229lelttrd 10408 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (𝑍 / 𝑉))
231 fllep1 12817 . . . . . . . . . . . . 13 ((𝑍 / 𝑉) ∈ ℝ → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23231, 231syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23353, 31, 57, 230, 232ltletrd 10410 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < ((⌊‘(𝑍 / 𝑉)) + 1))
23450, 233eqbrtrd 4827 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1))
23532, 47readdcld 10282 . . . . . . . . . . 11 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
236235, 55, 114ltadd1d 10833 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1)))
237234, 236mpbird 247 . . . . . . . . 9 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)))
23832, 47, 55ltaddsubd 10840 . . . . . . . . 9 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))))
239237, 238mpbid 222 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
24031flcld 12814 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
241 fzval3 12752 . . . . . . . . . . . 12 ((⌊‘(𝑍 / 𝑉)) ∈ ℤ → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
242240, 241syl 17 . . . . . . . . . . 11 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
24333, 242syl5eq 2807 . . . . . . . . . 10 (𝜑𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
244243fveq2d 6358 . . . . . . . . 9 (𝜑 → (♯‘𝐼) = (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))))
245 flword2 12829 . . . . . . . . . . . 12 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉)) → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
24645, 31, 123, 245syl3anc 1477 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
247 eluzp1p1 11926 . . . . . . . . . . 11 ((⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
248246, 247syl 17 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
249 hashfzo 13429 . . . . . . . . . 10 (((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
250248, 249syl 17 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
25155recnd 10281 . . . . . . . . . 10 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℂ)
252251, 48, 49pnpcan2d 10643 . . . . . . . . 9 (𝜑 → (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
253244, 250, 2523eqtrd 2799 . . . . . . . 8 (𝜑 → (♯‘𝐼) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
254239, 253breqtrrd 4833 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < (♯‘𝐼))
25532, 38, 254ltled 10398 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼))
25621, 38, 30lemuldivd 12135 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼) ↔ ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉))))
257255, 256mpbid 222 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)))
25829rpred 12086 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ ℝ)
25969, 76, 66, 95, 101ltletrd 10410 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (√‘𝑍))
260258, 69, 66, 120, 259lttrd 10411 . . . . . . . . . . . . . . 15 (𝜑𝑉 < (√‘𝑍))
261258, 66, 260ltled 10398 . . . . . . . . . . . . . 14 (𝜑𝑉 ≤ (√‘𝑍))
26229rprege0d 12093 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉))
26365rprege0d 12093 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
264 le2sq 13153 . . . . . . . . . . . . . . 15 (((𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
265262, 263, 264syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
266261, 265mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ≤ ((√‘𝑍)↑2))
267 resqrtth 14216 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
268105, 267syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑍)↑2) = 𝑍)
269266, 268breqtrd 4831 . . . . . . . . . . . 12 (𝜑 → (𝑉↑2) ≤ 𝑍)
270 2z 11622 . . . . . . . . . . . . . . 15 2 ∈ ℤ
271 rpexpcl 13094 . . . . . . . . . . . . . . 15 ((𝑉 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑉↑2) ∈ ℝ+)
27229, 270, 271sylancl 697 . . . . . . . . . . . . . 14 (𝜑 → (𝑉↑2) ∈ ℝ+)
273272rpred 12086 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ∈ ℝ)
274273, 109, 28lemul2d 12130 . . . . . . . . . . . 12 (𝜑 → ((𝑉↑2) ≤ 𝑍 ↔ (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍)))
275269, 274mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍))
276219sqvald 13220 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) = (𝑍 · 𝑍))
277275, 276breqtrrd 4833 . . . . . . . . . 10 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍↑2))
278109resqcld 13250 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) ∈ ℝ)
279109, 278, 272lemuldivd 12135 . . . . . . . . . 10 (𝜑 → ((𝑍 · (𝑉↑2)) ≤ (𝑍↑2) ↔ 𝑍 ≤ ((𝑍↑2) / (𝑉↑2))))
280277, 279mpbid 222 . . . . . . . . 9 (𝜑𝑍 ≤ ((𝑍↑2) / (𝑉↑2)))
28129rpne0d 12091 . . . . . . . . . 10 (𝜑𝑉 ≠ 0)
282219, 112, 281sqdivd 13236 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) = ((𝑍↑2) / (𝑉↑2)))
283280, 282breqtrrd 4833 . . . . . . . 8 (𝜑𝑍 ≤ ((𝑍 / 𝑉)↑2))
284 rpexpcl 13094 . . . . . . . . . 10 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28530, 270, 284sylancl 697 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28628, 285logled 24594 . . . . . . . 8 (𝜑 → (𝑍 ≤ ((𝑍 / 𝑉)↑2) ↔ (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2))))
287283, 286mpbid 222 . . . . . . 7 (𝜑 → (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2)))
288 relogexp 24563 . . . . . . . 8 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
28930, 270, 288sylancl 697 . . . . . . 7 (𝜑 → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
290287, 289breqtrd 4831 . . . . . 6 (𝜑 → (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉))))
29128relogcld 24590 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
29230relogcld 24590 . . . . . . 7 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
293 ledivmul 11112 . . . . . . 7 (((log‘𝑍) ∈ ℝ ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
294291, 292, 191, 193, 293syl112anc 1481 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
295290, 294mpbird 247 . . . . 5 (𝜑 → ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)))
29620rprege0d 12093 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)))
29738, 30rerpdivcld 12117 . . . . . 6 (𝜑 → ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ)
29827simp2d 1138 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
299298simp1d 1137 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
300109, 299rplogcld 24596 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
301300rphalfcld 12098 . . . . . . 7 (𝜑 → ((log‘𝑍) / 2) ∈ ℝ+)
302301rprege0d 12093 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)))
303 lemul12a 11094 . . . . . 6 ((((((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)) ∧ ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ) ∧ ((((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)) ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ)) → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
304296, 297, 302, 292, 303syl22anc 1478 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
305257, 295, 304mp2and 717 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
306300rpcnd 12088 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
307 8nn 11404 . . . . . . . 8 8 ∈ ℕ
308 nnrp 12056 . . . . . . . 8 (8 ∈ ℕ → 8 ∈ ℝ+)
309307, 308ax-mp 5 . . . . . . 7 8 ∈ ℝ+
310 rpcnne0 12064 . . . . . . 7 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
311309, 310mp1i 13 . . . . . 6 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
312 div23 10917 . . . . . 6 (((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ (8 ∈ ℂ ∧ 8 ≠ 0)) → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
313148, 306, 311, 312syl3anc 1477 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
314 divmuldiv 10938 . . . . . . 7 ((((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) ∧ ((4 ∈ ℂ ∧ 4 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
315148, 306, 141, 151, 314syl22anc 1478 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
316 4t2e8 11394 . . . . . . 7 (4 · 2) = 8
317316oveq2i 6826 . . . . . 6 (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / 8)
318315, 317syl6req 2812 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
319313, 318eqtr3d 2797 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
32038recnd 10281 . . . . 5 (𝜑 → (♯‘𝐼) ∈ ℂ)
321292recnd 10281 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℂ)
32230rpcnne0d 12095 . . . . 5 (𝜑 → ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0))
323 divass 10916 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
324 div23 10917 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
325323, 324eqtr3d 2797 . . . . 5 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
326320, 321, 322, 325syl3anc 1477 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
327305, 319, 3263brtr4d 4837 . . 3 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
328 rpdivcl 12070 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
32915, 309, 328sylancl 697 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
330329, 300rpmulcld 12102 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
331330rpred 12086 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
332292, 30rerpdivcld 12117 . . . . 5 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
33338, 332remulcld 10283 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
334181simp3d 1139 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
335331, 333, 334lemul2d 12130 . . 3 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ↔ ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))))
336327, 335mpbid 222 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
337334rpcnd 12088 . . 3 (𝜑 → (𝑈𝐸) ∈ ℂ)
338332recnd 10281 . . 3 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℂ)
339337, 320, 338mul12d 10458 . 2 (𝜑 → ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
340336, 339breqtrd 4831 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wne 2933  wral 3051  wrex 3052   class class class wbr 4805  cmpt 4882  cfv 6050  (class class class)co 6815  Fincfn 8124  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  +∞cpnf 10284   < clt 10287  cle 10288  cmin 10479   / cdiv 10897  cn 11233  2c2 11283  3c3 11284  4c4 11285  8c8 11289  0cn0 11505  cz 11590  cdc 11706  cuz 11900  +crp 12046  (,)cioo 12389  [,)cico 12391  [,]cicc 12392  ...cfz 12540  ..^cfzo 12680  cfl 12806  cexp 13075  chash 13332  csqrt 14193  abscabs 14194  expce 15012  eceu 15013  logclog 24522  ψcchp 25040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-fac 13276  df-bc 13305  df-hash 13333  df-shft 14027  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-limsup 14422  df-clim 14439  df-rlim 14440  df-sum 14637  df-ef 15018  df-e 15019  df-sin 15020  df-cos 15021  df-pi 15023  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-lp 21163  df-perf 21164  df-cn 21254  df-cnp 21255  df-haus 21342  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cncf 22903  df-limc 23850  df-dv 23851  df-log 24524
This theorem is referenced by:  pntlemj  25513
  Copyright terms: Public domain W3C validator