MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Visualization version   GIF version

Theorem pntlemn 25509
Description: Lemma for pnt 25523. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemn ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐽   𝑧,𝐿   𝑧,𝐾   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑎,𝐸   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧,𝑎)   𝐴(𝑧,𝑎)   𝐵(𝑧,𝑎)   𝐶(𝑎)   𝐷(𝑧,𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑧,𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
21adantr 466 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ+)
32rpred 12074 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ)
4 simprl 746 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℕ)
53, 4nndivred 11270 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑈 / 𝐽) ∈ ℝ)
6 pntlem1.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
7 pntlem1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
8 pntlem1.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ+)
9 pntlem1.l . . . . . . . . . . 11 (𝜑𝐿 ∈ (0(,)1))
10 pntlem1.d . . . . . . . . . . 11 𝐷 = (𝐴 + 1)
11 pntlem1.f . . . . . . . . . . 11 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
12 pntlem1.u2 . . . . . . . . . . 11 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . 11 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . 11 𝐾 = (exp‘(𝐵 / 𝐸))
15 pntlem1.y . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
16 pntlem1.x . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
17 pntlem1.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ+)
18 pntlem1.w . . . . . . . . . . 11 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
19 pntlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝑊[,)+∞))
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 25506 . . . . . . . . . 10 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2120simp1d 1135 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ+)
2221adantr 466 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ+)
234nnrpd 12072 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ+)
2422, 23rpdivcld 12091 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ+)
256pntrf 25472 . . . . . . . 8 𝑅:ℝ+⟶ℝ
2625ffvelrni 6501 . . . . . . 7 ((𝑍 / 𝐽) ∈ ℝ+ → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2724, 26syl 17 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2827, 22rerpdivcld 12105 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℝ)
2928recnd 10269 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℂ)
3029abscld 14382 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ∈ ℝ)
315, 30resubcld 10659 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ∈ ℝ)
3223relogcld 24589 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘𝐽) ∈ ℝ)
3327recnd 10269 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℂ)
3422rpcnne0d 12083 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
3523rpcnne0d 12083 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0))
36 divdiv2 10938 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0)) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
3733, 34, 35, 36syl3anc 1475 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
384nncnd 11237 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℂ)
39 div23 10905 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4033, 38, 34, 39syl3anc 1475 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4137, 40eqtrd 2804 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4241fveq2d 6336 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)))
4329, 38absmuld 14400 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)))
4423rprege0d 12081 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℝ ∧ 0 ≤ 𝐽))
45 absid 14243 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽) → (abs‘𝐽) = 𝐽)
4644, 45syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘𝐽) = 𝐽)
4746oveq2d 6808 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
4842, 43, 473eqtrd 2808 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
49 fveq2 6332 . . . . . . . . 9 (𝑧 = (𝑍 / 𝐽) → (𝑅𝑧) = (𝑅‘(𝑍 / 𝐽)))
50 id 22 . . . . . . . . 9 (𝑧 = (𝑍 / 𝐽) → 𝑧 = (𝑍 / 𝐽))
5149, 50oveq12d 6810 . . . . . . . 8 (𝑧 = (𝑍 / 𝐽) → ((𝑅𝑧) / 𝑧) = ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)))
5251fveq2d 6336 . . . . . . 7 (𝑧 = (𝑍 / 𝐽) → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))))
5352breq1d 4794 . . . . . 6 (𝑧 = (𝑍 / 𝐽) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈))
54 pntlem1.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
5554adantr 466 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
5624rpred 12074 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ)
57 simprr 748 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ≤ (𝑍 / 𝑌))
5823rpred 12074 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ)
5922rpred 12074 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ)
6015simpld 476 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
6160adantr 466 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ+)
6258, 59, 61lemuldiv2d 12124 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝐽 ≤ (𝑍 / 𝑌)))
6357, 62mpbird 247 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑌 · 𝐽) ≤ 𝑍)
6461rpred 12074 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ)
6564, 59, 23lemuldivd 12123 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝑌 ≤ (𝑍 / 𝐽)))
6663, 65mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ≤ (𝑍 / 𝐽))
67 elicopnf 12474 . . . . . . . 8 (𝑌 ∈ ℝ → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6864, 67syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6956, 66, 68mpbir2and 684 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ (𝑌[,)+∞))
7053, 55, 69rspcdva 3464 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈)
7148, 70eqbrtrrd 4808 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈)
7230, 3, 23lemuldivd 12123 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7371, 72mpbid 222 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽))
745, 30subge0d 10818 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7573, 74mpbird 247 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))))
76 log1 24552 . . 3 (log‘1) = 0
77 nnge1 11247 . . . . 5 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
7877ad2antrl 699 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 1 ≤ 𝐽)
79 1rp 12038 . . . . 5 1 ∈ ℝ+
80 logleb 24569 . . . . 5 ((1 ∈ ℝ+𝐽 ∈ ℝ+) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8179, 23, 80sylancr 567 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8278, 81mpbid 222 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘1) ≤ (log‘𝐽))
8376, 82syl5eqbrr 4820 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (log‘𝐽))
8431, 32, 75, 83mulge0d 10805 1 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wral 3060   class class class wbr 4784  cmpt 4861  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  +∞cpnf 10272   < clt 10275  cle 10276  cmin 10467   / cdiv 10885  cn 11221  2c2 11271  3c3 11272  4c4 11273  cdc 11694  +crp 12034  (,)cioo 12379  [,)cico 12381  cfl 12798  cexp 13066  csqrt 14180  abscabs 14181  expce 14997  eceu 14998  logclog 24521  ψcchp 25039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-ef 15003  df-e 15004  df-sin 15005  df-cos 15006  df-pi 15008  df-dvds 15189  df-gcd 15424  df-prm 15592  df-pc 15748  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-limc 23849  df-dv 23850  df-log 24523  df-vma 25044  df-chp 25045
This theorem is referenced by:  pntlemj  25512  pntlemf  25514
  Copyright terms: Public domain W3C validator