MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Structured version   Visualization version   GIF version

Theorem pntlemg 25407
Description: Lemma for pnt 25423. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemg (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
2 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
32simpld 477 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
43rpred 11986 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
5 1red 10168 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
76simpld 477 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ+)
87rpred 11986 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
96simprd 482 . . . . . . . 8 (𝜑 → 1 ≤ 𝑌)
102simprd 482 . . . . . . . 8 (𝜑𝑌 < 𝑋)
115, 8, 4, 9, 10lelttrd 10308 . . . . . . 7 (𝜑 → 1 < 𝑋)
124, 11rplogcld 24495 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℝ+)
13 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
14 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
15 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
16 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
17 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
18 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
19 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
20 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
21 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
22 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22pntlemc 25404 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2423simp2d 1135 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
2524rpred 11986 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
2623simp3d 1136 . . . . . . . 8 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
2726simp2d 1135 . . . . . . 7 (𝜑 → 1 < 𝐾)
2825, 27rplogcld 24495 . . . . . 6 (𝜑 → (log‘𝐾) ∈ ℝ+)
2912, 28rpdivcld 12003 . . . . 5 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ+)
3029rprege0d 11993 . . . 4 (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))))
31 flge0nn0 12736 . . . 4 ((((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0)
32 nn0p1nn 11445 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
3330, 31, 323syl 18 . . 3 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
341, 33syl5eqel 2807 . 2 (𝜑𝑀 ∈ ℕ)
3534nnzd 11594 . . 3 (𝜑𝑀 ∈ ℤ)
36 pntlem1.n . . . 4 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
37 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
38 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
39 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
4013, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39pntlemb 25406 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
4140simp1d 1134 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
4241relogcld 24489 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
4342, 28rerpdivcld 12017 . . . . . 6 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
4443rehalfcld 11392 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
4544flcld 12714 . . . 4 (𝜑 → (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ)
4636, 45syl5eqel 2807 . . 3 (𝜑𝑁 ∈ ℤ)
47 0red 10154 . . . . 5 (𝜑 → 0 ∈ ℝ)
48 4nn 11300 . . . . . 6 4 ∈ ℕ
49 nndivre 11169 . . . . . 6 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5043, 48, 49sylancl 697 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5146zred 11595 . . . . . 6 (𝜑𝑁 ∈ ℝ)
5234nnred 11148 . . . . . 6 (𝜑𝑀 ∈ ℝ)
5351, 52resubcld 10571 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℝ)
5441rpred 11986 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
5540simp2d 1135 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5655simp1d 1134 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
5754, 56rplogcld 24495 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
5857, 28rpdivcld 12003 . . . . . . 7 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
59 4re 11210 . . . . . . . 8 4 ∈ ℝ
60 4pos 11229 . . . . . . . 8 0 < 4
6159, 60elrpii 11949 . . . . . . 7 4 ∈ ℝ+
62 rpdivcl 11970 . . . . . . 7 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6358, 61, 62sylancl 697 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6463rpge0d 11990 . . . . 5 (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
6550recnd 10181 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
6634nncnd 11149 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
67 1cnd 10169 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
6865, 66, 67addassd 10175 . . . . . . . 8 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)))
6952, 5readdcld 10182 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℝ)
7050, 69readdcld 10182 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ)
71 peano2re 10322 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7251, 71syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
7329rpred 11986 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
74 2re 11203 . . . . . . . . . . . . . 14 2 ∈ ℝ
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
7673, 75readdcld 10182 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ)
77 reflcl 12712 . . . . . . . . . . . . . . . . 17 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7873, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7978recnd 10181 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ)
8079, 67, 67addassd 10175 . . . . . . . . . . . . . 14 (𝜑 → (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)))
811oveq1i 6775 . . . . . . . . . . . . . 14 (𝑀 + 1) = (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1)
82 df-2 11192 . . . . . . . . . . . . . . 15 2 = (1 + 1)
8382oveq2i 6776 . . . . . . . . . . . . . 14 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))
8480, 81, 833eqtr4g 2783 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2))
85 flle 12715 . . . . . . . . . . . . . . 15 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8673, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8778, 73, 75, 86leadd1dd 10754 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8884, 87eqbrtrd 4782 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8940simp3d 1136 . . . . . . . . . . . . 13 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
9089simp2d 1135 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9169, 76, 50, 88, 90letrd 10307 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9269, 50, 50, 91leadd2dd 10755 . . . . . . . . . 10 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
9343recnd 10181 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
94 2cnd 11206 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
95 2ne0 11226 . . . . . . . . . . . . . . 15 2 ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
9793, 94, 94, 96, 96divdiv1d 10945 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2)))
98 2t2e4 11290 . . . . . . . . . . . . . 14 (2 · 2) = 4
9998oveq2i 6776 . . . . . . . . . . . . 13 (((log‘𝑍) / (log‘𝐾)) / (2 · 2)) = (((log‘𝑍) / (log‘𝐾)) / 4)
10097, 99syl6eq 2774 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4))
101100oveq2d 6781 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (2 · (((log‘𝑍) / (log‘𝐾)) / 4)))
10244recnd 10181 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ)
103102, 94, 96divcan2d 10916 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (((log‘𝑍) / (log‘𝐾)) / 2))
104652timesd 11388 . . . . . . . . . . 11 (𝜑 → (2 · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
105101, 103, 1043eqtr3d 2766 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
10692, 105breqtrrd 4788 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
107 fllep1 12717 . . . . . . . . . . 11 ((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10844, 107syl 17 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10936oveq1i 6775 . . . . . . . . . 10 (𝑁 + 1) = ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)
110108, 109syl6breqr 4802 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1))
11170, 44, 72, 106, 110letrd 10307 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1))
11268, 111eqbrtrd 4782 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))
11350, 52readdcld 10182 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ)
114113, 51, 5leadd1d 10734 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)))
115112, 114mpbird 247 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁)
116 leaddsub 10617 . . . . . . 7 (((((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
11750, 52, 51, 116syl3anc 1439 . . . . . 6 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
118115, 117mpbid 222 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
11947, 50, 53, 64, 118letrd 10307 . . . 4 (𝜑 → 0 ≤ (𝑁𝑀))
12051, 52subge0d 10730 . . . 4 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
121119, 120mpbid 222 . . 3 (𝜑𝑀𝑁)
122 eluz2 11806 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
12335, 46, 121, 122syl3anbrc 1383 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
12434, 123, 1183jca 1379 1 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  cmpt 4837  cfv 6001  (class class class)co 6765  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  +∞cpnf 10184   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  cn 11133  2c2 11183  3c3 11184  4c4 11185  0cn0 11405  cz 11490  cdc 11606  cuz 11800  +crp 11946  (,)cioo 12289  [,)cico 12291  cfl 12706  cexp 12975  csqrt 14093  expce 14912  eceu 14913  logclog 24421  ψcchp 24939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-e 14919  df-sin 14920  df-cos 14921  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423
This theorem is referenced by:  pntlemh  25408  pntlemq  25410  pntlemr  25411  pntlemj  25412  pntlemf  25414
  Copyright terms: Public domain W3C validator