MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleme Structured version   Visualization version   GIF version

Theorem pntleme 25496
Description: Lemma for pnt 25502. Package up pntlemo 25495 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntleme.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntleme.K (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntleme.C (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
Assertion
Ref Expression
pntleme (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑧,𝐶   𝑤,𝐹   𝑦,𝑧   𝑢,𝑘,𝑦,𝑧,𝐿   𝑘,𝐾,𝑦,𝑧   𝜑,𝑣   𝑖,𝑘,𝑢,𝑣,𝑤,𝑦,𝑧,𝑅   𝑤,𝑈,𝑧   𝑣,𝑊,𝑤,𝑧   𝑘,𝑋,𝑦,𝑧   𝑖,𝑌,𝑧   𝑘,𝑎,𝑢,𝑣,𝑦,𝑧,𝐸
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑢,𝑖,𝑘,𝑎)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐶(𝑦,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐷(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐸(𝑤,𝑖)   𝐹(𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐾(𝑤,𝑣,𝑢,𝑖,𝑎)   𝐿(𝑤,𝑣,𝑖,𝑎)   𝑊(𝑦,𝑢,𝑖,𝑘,𝑎)   𝑋(𝑤,𝑣,𝑢,𝑖,𝑎)   𝑌(𝑦,𝑤,𝑣,𝑢,𝑘,𝑎)

Proof of Theorem pntleme
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . 3 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . 3 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . 3 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
6 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . 3 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . 3 (𝜑𝑈𝐴)
9 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . 3 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . 3 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . 3 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . 3 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlema 25484 . 2 (𝜑𝑊 ∈ ℝ+)
162adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐴 ∈ ℝ+)
173adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐵 ∈ ℝ+)
184adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐿 ∈ (0(,)1))
197adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑈 ∈ ℝ+)
208adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑈𝐴)
2111adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
2212adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2313adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐶 ∈ ℝ+)
24 simpr 479 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑣 ∈ (𝑊[,)+∞))
25 eqid 2760 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
26 eqid 2760 . . . 4 (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2)) = (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2))
27 pntleme.U . . . . 5 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
2827adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
29 oveq1 6820 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘 · 𝑦) = (𝐾 · 𝑦))
3029breq2d 4816 . . . . . . . . . 10 (𝑘 = 𝐾 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)))
3130anbi2d 742 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦))))
3231anbi1d 743 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
3332rexbidv 3190 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
3433ralbidv 3124 . . . . . 6 (𝑘 = 𝐾 → (∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
35 pntleme.K . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 25483 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3736simp2d 1138 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
3837rpxrd 12066 . . . . . . 7 (𝜑𝐾 ∈ ℝ*)
39 pnfxr 10284 . . . . . . . 8 +∞ ∈ ℝ*
4039a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
4137rpred 12065 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
42 ltpnf 12147 . . . . . . . 8 (𝐾 ∈ ℝ → 𝐾 < +∞)
4341, 42syl 17 . . . . . . 7 (𝜑𝐾 < +∞)
44 lbico1 12421 . . . . . . 7 ((𝐾 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐾 < +∞) → 𝐾 ∈ (𝐾[,)+∞))
4538, 40, 43, 44syl3anc 1477 . . . . . 6 (𝜑𝐾 ∈ (𝐾[,)+∞))
4634, 35, 45rspcdva 3455 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4746adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
48 pntleme.C . . . . 5 (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
4948adantr 472 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
501, 16, 17, 18, 5, 6, 19, 20, 9, 10, 21, 22, 23, 14, 24, 25, 26, 28, 47, 49pntlemo 25495 . . 3 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
5150ralrimiva 3104 . 2 (𝜑 → ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
52 oveq1 6820 . . . 4 (𝑤 = 𝑊 → (𝑤[,)+∞) = (𝑊[,)+∞))
5352raleqdv 3283 . . 3 (𝑤 = 𝑊 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
5453rspcev 3449 . 2 ((𝑊 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
5515, 51, 54syl2anc 696 1 (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  +∞cpnf 10263  *cxr 10265   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  2c2 11262  3c3 11263  4c4 11264  cdc 11685  +crp 12025  (,)cioo 12368  [,)cico 12370  [,]cicc 12371  ...cfz 12519  cfl 12785  cexp 13054  abscabs 14173  Σcsu 14615  expce 14991  logclog 24500  ψcchp 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-e 14998  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-em 24918  df-vma 25023  df-chp 25024
This theorem is referenced by:  pntlemp  25498
  Copyright terms: Public domain W3C validator