![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntlemc | Structured version Visualization version GIF version |
Description: Lemma for pnt 25524. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
Ref | Expression |
---|---|
pntlemc | ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
2 | pntlem1.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
3 | pntlem1.r | . . . . . 6 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
4 | pntlem1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
5 | pntlem1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
6 | pntlem1.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
7 | pntlem1.d | . . . . . 6 ⊢ 𝐷 = (𝐴 + 1) | |
8 | pntlem1.f | . . . . . 6 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
9 | 3, 4, 5, 6, 7, 8 | pntlemd 25504 | . . . . 5 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
10 | 9 | simp2d 1137 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
11 | 2, 10 | rpdivcld 12092 | . . 3 ⊢ (𝜑 → (𝑈 / 𝐷) ∈ ℝ+) |
12 | 1, 11 | syl5eqel 2854 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
13 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
14 | 5, 12 | rpdivcld 12092 | . . . . 5 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ+) |
15 | 14 | rpred 12075 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
16 | 15 | rpefcld 15041 | . . 3 ⊢ (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+) |
17 | 13, 16 | syl5eqel 2854 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
18 | 12 | rpred 12075 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
19 | 12 | rpgt0d 12078 | . . . 4 ⊢ (𝜑 → 0 < 𝐸) |
20 | 2 | rpred 12075 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
21 | 4 | rpred 12075 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
22 | 10 | rpred 12075 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
23 | pntlem1.u2 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
24 | 21 | ltp1d 11160 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
25 | 24, 7 | syl6breqr 4829 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐷) |
26 | 20, 21, 22, 23, 25 | lelttrd 10401 | . . . . . . 7 ⊢ (𝜑 → 𝑈 < 𝐷) |
27 | 10 | rpcnd 12077 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
28 | 27 | mulid1d 10263 | . . . . . . 7 ⊢ (𝜑 → (𝐷 · 1) = 𝐷) |
29 | 26, 28 | breqtrrd 4815 | . . . . . 6 ⊢ (𝜑 → 𝑈 < (𝐷 · 1)) |
30 | 1red 10261 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
31 | 20, 30, 10 | ltdivmuld 12126 | . . . . . 6 ⊢ (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1))) |
32 | 29, 31 | mpbird 247 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 1) |
33 | 1, 32 | syl5eqbr 4822 | . . . 4 ⊢ (𝜑 → 𝐸 < 1) |
34 | 0xr 10292 | . . . . 5 ⊢ 0 ∈ ℝ* | |
35 | 1re 10245 | . . . . . 6 ⊢ 1 ∈ ℝ | |
36 | 35 | rexri 10303 | . . . . 5 ⊢ 1 ∈ ℝ* |
37 | elioo2 12421 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1))) | |
38 | 34, 36, 37 | mp2an 672 | . . . 4 ⊢ (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1)) |
39 | 18, 19, 33, 38 | syl3anbrc 1428 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
40 | efgt1 15052 | . . . . 5 ⊢ ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸))) | |
41 | 14, 40 | syl 17 | . . . 4 ⊢ (𝜑 → 1 < (exp‘(𝐵 / 𝐸))) |
42 | 41, 13 | syl6breqr 4829 | . . 3 ⊢ (𝜑 → 1 < 𝐾) |
43 | ltaddrp 12070 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
44 | 35, 4, 43 | sylancr 575 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
45 | 2 | rpcnne0d 12084 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0)) |
46 | divid 10920 | . . . . . . . 8 ⊢ ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1) | |
47 | 45, 46 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 / 𝑈) = 1) |
48 | 4 | rpcnd 12077 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
49 | ax-1cn 10200 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
50 | addcom 10428 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
51 | 48, 49, 50 | sylancl 574 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
52 | 7, 51 | syl5eq 2817 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
53 | 44, 47, 52 | 3brtr4d 4819 | . . . . . 6 ⊢ (𝜑 → (𝑈 / 𝑈) < 𝐷) |
54 | 20, 2, 10, 53 | ltdiv23d 12142 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 𝑈) |
55 | 1, 54 | syl5eqbr 4822 | . . . 4 ⊢ (𝜑 → 𝐸 < 𝑈) |
56 | difrp 12071 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) | |
57 | 18, 20, 56 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) |
58 | 55, 57 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
59 | 39, 42, 58 | 3jca 1122 | . 2 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
60 | 12, 17, 59 | 3jca 1122 | 1 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 class class class wbr 4787 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 ℝcr 10141 0cc0 10142 1c1 10143 + caddc 10145 · cmul 10147 ℝ*cxr 10279 < clt 10280 ≤ cle 10281 − cmin 10472 / cdiv 10890 2c2 11276 3c3 11277 ;cdc 11700 ℝ+crp 12035 (,)cioo 12380 ↑cexp 13067 expce 14998 ψcchp 25040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-rp 12036 df-ioo 12384 df-ico 12386 df-fz 12534 df-fzo 12674 df-fl 12801 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 |
This theorem is referenced by: pntlema 25506 pntlemb 25507 pntlemg 25508 pntlemh 25509 pntlemq 25511 pntlemr 25512 pntlemj 25513 pntlemi 25514 pntlemf 25515 pntlemo 25517 pntleme 25518 pntlemp 25520 |
Copyright terms: Public domain | W3C validator |