![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnrmcld | Structured version Visualization version GIF version |
Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
pnrmcld | ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispnrm 21366 | . . . 4 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) | |
2 | 1 | simprbi 483 | . . 3 ⊢ (𝐽 ∈ PNrm → (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
3 | 2 | sselda 3745 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
4 | eqid 2761 | . . . 4 ⊢ (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) | |
5 | 4 | elrnmpt 5528 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓)) |
6 | 5 | adantl 473 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓)) |
7 | 3, 6 | mpbid 222 | 1 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∃wrex 3052 ⊆ wss 3716 ∩ cint 4628 ↦ cmpt 4882 ran crn 5268 ‘cfv 6050 (class class class)co 6815 ↑𝑚 cmap 8026 ℕcn 11233 Clsdccld 21043 Nrmcnrm 21337 PNrmcpnrm 21339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-cnv 5275 df-dm 5277 df-rn 5278 df-iota 6013 df-fv 6058 df-ov 6818 df-pnrm 21346 |
This theorem is referenced by: pnrmopn 21370 |
Copyright terms: Public domain | W3C validator |