![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnemnf | Structured version Visualization version GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10130 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 4861 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2877 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 10115 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 2896 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ≠ wne 2823 𝒫 cpw 4191 +∞cpnf 10109 -∞cmnf 10110 ℝ*cxr 10111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-pow 4873 ax-un 6991 ax-cnex 10030 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-rex 2947 df-rab 2950 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 df-pw 4193 df-sn 4211 df-pr 4213 df-uni 4469 df-pnf 10114 df-mnf 10115 df-xr 10116 |
This theorem is referenced by: mnfnepnf 10133 xnn0nemnf 11412 xrnemnf 11989 xrltnr 11991 pnfnlt 12000 nltmnf 12001 xaddpnf1 12095 xaddnemnf 12105 xmullem2 12133 xadddilem 12162 hashnemnf 13172 xrge0iifhom 30111 esumpr2 30257 |
Copyright terms: Public domain | W3C validator |