![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 12076 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 10205 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 10216 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 709 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 247 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∈ wcel 2103 class class class wbr 4760 +∞cpnf 10184 ℝ*cxr 10186 < clt 10187 ≤ cle 10188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-xp 5224 df-cnv 5226 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 |
This theorem is referenced by: xnn0n0n1ge2b 12079 0lepnf 12080 nltpnft 12109 xrre2 12115 xleadd1a 12197 xlt2add 12204 xsubge0 12205 xlesubadd 12207 xlemul1a 12232 elicore 12340 elico2 12351 iccmax 12363 elxrge0 12395 nfile 13263 hashdom 13281 hashdomi 13282 hashge1 13291 hashss 13310 hashge2el2difr 13376 pcdvdsb 15696 pc2dvds 15706 pcaddlem 15715 xrsdsreclblem 19915 leordtvallem1 21137 lecldbas 21146 isxmet2d 22254 blssec 22362 nmoix 22655 nmoleub 22657 xrtgioo 22731 xrge0tsms 22759 metdstri 22776 nmoleub2lem 23035 ovolf 23371 ovollb2 23378 ovoliun 23394 ovolre 23414 voliunlem3 23441 volsup 23445 icombl 23453 ioombl 23454 ismbfd 23527 itg2seq 23629 dvfsumrlim 23914 dvfsumrlim2 23915 radcnvcl 24291 xrlimcnp 24815 logfacbnd3 25068 log2sumbnd 25353 tgldimor 25517 xrdifh 29772 xrge0tsmsd 30015 unitssxrge0 30176 tpr2rico 30188 lmxrge0 30228 esumle 30350 esumlef 30354 esumpinfval 30365 esumpinfsum 30369 esumcvgsum 30380 ddemeas 30529 sxbrsigalem2 30578 omssubadd 30592 carsgclctunlem3 30612 signsply0 30858 ismblfin 33682 xrgepnfd 39962 supxrgelem 39968 supxrge 39969 infrpge 39982 xrlexaddrp 39983 infleinflem1 40001 infleinf 40003 infxrpnf 40089 pnfged 40119 ge0xrre 40178 iblsplit 40602 ismbl3 40623 ovolsplit 40625 sge0cl 41018 sge0less 41029 sge0pr 41031 sge0le 41044 sge0split 41046 carageniuncl 41160 ovnsubaddlem1 41207 hspmbl 41266 pimiooltgt 41344 pgrpgt2nabl 42574 |
Copyright terms: Public domain | W3C validator |