![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version |
Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
pnfex | ⊢ +∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10293 | . 2 ⊢ +∞ ∈ ℝ* | |
2 | 1 | elexi 3362 | 1 ⊢ +∞ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2144 Vcvv 3349 +∞cpnf 10272 ℝ*cxr 10274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-pow 4971 ax-un 7095 ax-cnex 10193 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rex 3066 df-v 3351 df-un 3726 df-in 3728 df-ss 3735 df-pw 4297 df-sn 4315 df-pr 4317 df-uni 4573 df-pnf 10277 df-xr 10279 |
This theorem is referenced by: mnfxr 10297 elxnn0 11566 elxr 12154 xnegex 12243 xaddval 12258 xmulval 12260 xrinfmss 12344 hashgval 13323 hashinf 13325 hashfxnn0 13327 hashfOLD 13329 pcval 15755 pc0 15765 ramcl2 15926 iccpnfhmeo 22963 taylfval 24332 xrlimcnp 24915 xrge0iifcv 30314 xrge0iifiso 30315 xrge0iifhom 30317 sge0f1o 41110 sge0sup 41119 sge0pnfmpt 41173 |
Copyright terms: Public domain | W3C validator |