Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrto1cl Structured version   Visualization version   GIF version

Theorem pmtrto1cl 30183
Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
pmtrto1cl.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrto1cl ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)

Proof of Theorem pmtrto1cl
StepHypRef Expression
1 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
2 fzfi 12978 . . . 4 (1...𝑁) ∈ Fin
31, 2eqeltri 2845 . . 3 𝐷 ∈ Fin
43a1i 11 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐷 ∈ Fin)
5 simpl 468 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℕ)
6 simpr 471 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ 𝐷)
76, 1syl6eleq 2859 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ (1...𝑁))
8 elfz1b 12615 . . . . . . . 8 ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
97, 8sylib 208 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → ((𝐾 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 1) ≤ 𝑁))
109simp2d 1136 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℕ)
115nnred 11236 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ ℝ)
12 1red 10256 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 1 ∈ ℝ)
1311, 12readdcld 10270 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ∈ ℝ)
1410nnred 11236 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝑁 ∈ ℝ)
1511lep1d 11156 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≤ (𝐾 + 1))
169simp3d 1137 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 + 1) ≤ 𝑁)
1711, 13, 14, 15, 16letrd 10395 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝑁)
185, 10, 173jca 1121 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
19 elfz1b 12615 . . . . 5 (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
2018, 19sylibr 224 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ∈ (1...𝑁))
2120, 1syl6eleqr 2860 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾𝐷)
22 prssi 4485 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2321, 6, 22syl2anc 565 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ⊆ 𝐷)
2411ltp1d 11155 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 < (𝐾 + 1))
2511, 24ltned 10374 . . 3 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → 𝐾 ≠ (𝐾 + 1))
26 pr2nelem 9026 . . 3 ((𝐾𝐷 ∧ (𝐾 + 1) ∈ 𝐷𝐾 ≠ (𝐾 + 1)) → {𝐾, (𝐾 + 1)} ≈ 2𝑜)
2721, 6, 25, 26syl3anc 1475 . 2 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → {𝐾, (𝐾 + 1)} ≈ 2𝑜)
28 pmtrto1cl.t . . 3 𝑇 = (pmTrsp‘𝐷)
29 eqid 2770 . . 3 ran 𝑇 = ran 𝑇
3028, 29pmtrrn 18083 . 2 ((𝐷 ∈ Fin ∧ {𝐾, (𝐾 + 1)} ⊆ 𝐷 ∧ {𝐾, (𝐾 + 1)} ≈ 2𝑜) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
314, 23, 27, 30syl3anc 1475 1 ((𝐾 ∈ ℕ ∧ (𝐾 + 1) ∈ 𝐷) → (𝑇‘{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wss 3721  {cpr 4316   class class class wbr 4784  ran crn 5250  cfv 6031  (class class class)co 6792  2𝑜c2o 7706  cen 8105  Fincfn 8108  1c1 10138   + caddc 10140  cle 10276  cn 11221  ...cfz 12532  pmTrspcpmtr 18067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-pmtr 18068
This theorem is referenced by:  psgnfzto1stlem  30184  fzto1st  30187  psgnfzto1st  30189
  Copyright terms: Public domain W3C validator