MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfvalrn Structured version   Visualization version   GIF version

Theorem pmtrprfvalrn 17954
Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfvalrn ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}

Proof of Theorem pmtrprfvalrn
Dummy variables 𝑡 𝑝 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrprfval 17953 . . 3 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
21rneqi 5384 . 2 ran (pmTrsp‘{1, 2}) = ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
3 eqid 2651 . . . 4 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
43rnmpt 5403 . . 3 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))}
5 1ex 10073 . . . . . . . 8 1 ∈ V
6 id 22 . . . . . . . . . 10 (1 ∈ V → 1 ∈ V)
7 2nn 11223 . . . . . . . . . . 11 2 ∈ ℕ
87a1i 11 . . . . . . . . . 10 (1 ∈ V → 2 ∈ ℕ)
9 iftrue 4125 . . . . . . . . . . 11 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
109adantl 481 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 1) → if(𝑧 = 1, 2, 1) = 2)
11 1ne2 11278 . . . . . . . . . . . . . 14 1 ≠ 2
1211nesymi 2880 . . . . . . . . . . . . 13 ¬ 2 = 1
13 eqeq1 2655 . . . . . . . . . . . . 13 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
1412, 13mtbiri 316 . . . . . . . . . . . 12 (𝑧 = 2 → ¬ 𝑧 = 1)
1514iffalsed 4130 . . . . . . . . . . 11 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
1615adantl 481 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 2) → if(𝑧 = 1, 2, 1) = 1)
176, 8, 8, 6, 10, 16fmptpr 6479 . . . . . . . . 9 (1 ∈ V → {⟨1, 2⟩, ⟨2, 1⟩} = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
1817eqeq2d 2661 . . . . . . . 8 (1 ∈ V → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))))
195, 18ax-mp 5 . . . . . . 7 (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
2019bicomi 214 . . . . . 6 (𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ 𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2120rexbii 3070 . . . . 5 (∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2221abbii 2768 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}}
23 prex 4939 . . . . . . . 8 {1, 2} ∈ V
2423snnz 4340 . . . . . . 7 {{1, 2}} ≠ ∅
25 r19.9rzv 4098 . . . . . . . 8 ({{1, 2}} ≠ ∅ → (𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2625bicomd 213 . . . . . . 7 ({{1, 2}} ≠ ∅ → (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2724, 26ax-mp 5 . . . . . 6 (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
28 vex 3234 . . . . . . 7 𝑠 ∈ V
29 eqeq1 2655 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3029rexbidv 3081 . . . . . . 7 (𝑡 = 𝑠 → (∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3128, 30elab 3382 . . . . . 6 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
32 velsn 4226 . . . . . 6 (𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
3327, 31, 323bitr4i 292 . . . . 5 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}})
3433eqriv 2648 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} = {{⟨1, 2⟩, ⟨2, 1⟩}}
3522, 34eqtri 2673 . . 3 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {{⟨1, 2⟩, ⟨2, 1⟩}}
364, 35eqtri 2673 . 2 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {{⟨1, 2⟩, ⟨2, 1⟩}}
372, 36eqtri 2673 1 ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wcel 2030  {cab 2637  wne 2823  wrex 2942  Vcvv 3231  c0 3948  ifcif 4119  {csn 4210  {cpr 4212  cop 4216  cmpt 4762  ran crn 5144  cfv 5926  1c1 9975  cn 11058  2c2 11108  pmTrspcpmtr 17907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-pmtr 17908
This theorem is referenced by:  psgnprfval2  17989
  Copyright terms: Public domain W3C validator