![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrfv | Structured version Visualization version GIF version |
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrfv | ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrfval.t | . . . . 5 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | 1 | pmtrval 17917 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
3 | 2 | fveq1d 6231 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
4 | 3 | adantr 480 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
5 | simpr 476 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → 𝑍 ∈ 𝐷) | |
6 | simpl3 1086 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → 𝑃 ≈ 2𝑜) | |
7 | relen 8002 | . . . . . 6 ⊢ Rel ≈ | |
8 | 7 | brrelexi 5192 | . . . . 5 ⊢ (𝑃 ≈ 2𝑜 → 𝑃 ∈ V) |
9 | difexg 4841 | . . . . 5 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V) | |
10 | uniexg 6997 | . . . . 5 ⊢ ((𝑃 ∖ {𝑍}) ∈ V → ∪ (𝑃 ∖ {𝑍}) ∈ V) | |
11 | 6, 8, 9, 10 | 4syl 19 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → ∪ (𝑃 ∖ {𝑍}) ∈ V) |
12 | ifexg 4190 | . . . 4 ⊢ ((∪ (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) | |
13 | 11, 5, 12 | syl2anc 694 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) |
14 | eleq1 2718 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ 𝑃 ↔ 𝑍 ∈ 𝑃)) | |
15 | sneq 4220 | . . . . . . 7 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
16 | 15 | difeq2d 3761 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍})) |
17 | 16 | unieqd 4478 | . . . . 5 ⊢ (𝑧 = 𝑍 → ∪ (𝑃 ∖ {𝑧}) = ∪ (𝑃 ∖ {𝑍})) |
18 | id 22 | . . . . 5 ⊢ (𝑧 = 𝑍 → 𝑧 = 𝑍) | |
19 | 14, 17, 18 | ifbieq12d 4146 | . . . 4 ⊢ (𝑧 = 𝑍 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
20 | eqid 2651 | . . . 4 ⊢ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) | |
21 | 19, 20 | fvmptg 6319 | . . 3 ⊢ ((𝑍 ∈ 𝐷 ∧ if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) → ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
22 | 5, 13, 21 | syl2anc 694 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
23 | 4, 22 | eqtrd 2685 | 1 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 ifcif 4119 {csn 4210 ∪ cuni 4468 class class class wbr 4685 ↦ cmpt 4762 ‘cfv 5926 2𝑜c2o 7599 ≈ cen 7994 pmTrspcpmtr 17907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-en 7998 df-pmtr 17908 |
This theorem is referenced by: pmtrprfv 17919 pmtrprfv3 17920 pmtrmvd 17922 pmtrffv 17925 |
Copyright terms: Public domain | W3C validator |