![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrff1o | Structured version Visualization version GIF version |
Description: A transposition function is a permutation. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrff1o | ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷–1-1-onto→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrrn.t | . . . . . 6 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | pmtrrn.r | . . . . . 6 ⊢ 𝑅 = ran 𝑇 | |
3 | eqid 2651 | . . . . . 6 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
4 | 1, 2, 3 | pmtrfrn 17924 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
5 | 4 | simpld 474 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜)) |
6 | 1 | pmtrf 17921 | . . . 4 ⊢ ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
8 | 4 | simprd 478 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) |
9 | 8 | feq1d 6068 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐹:𝐷⟶𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷)) |
10 | 7, 9 | mpbird 247 | . 2 ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷⟶𝐷) |
11 | 1, 2 | pmtrfinv 17927 | . 2 ⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) = ( I ↾ 𝐷)) |
12 | 10, 10, 11, 11 | fcof1od 6589 | 1 ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷–1-1-onto→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 class class class wbr 4685 I cid 5052 dom cdm 5143 ran crn 5144 ⟶wf 5922 –1-1-onto→wf1o 5925 ‘cfv 5926 2𝑜c2o 7599 ≈ cen 7994 pmTrspcpmtr 17907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-2o 7606 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pmtr 17908 |
This theorem is referenced by: pmtrfb 17931 pmtrfconj 17932 symgtrf 17935 psgnunilem1 17959 psgnfzto1stlem 29978 pmtridf1o 29984 |
Copyright terms: Public domain | W3C validator |