MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrff1o Structured version   Visualization version   GIF version

Theorem pmtrff1o 17929
Description: A transposition function is a permutation. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrff1o (𝐹𝑅𝐹:𝐷1-1-onto𝐷)

Proof of Theorem pmtrff1o
StepHypRef Expression
1 pmtrrn.t . . . . . 6 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 eqid 2651 . . . . . 6 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 17924 . . . . 5 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 474 . . . 4 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜))
61pmtrf 17921 . . . 4 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
75, 6syl 17 . . 3 (𝐹𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
84simprd 478 . . . 4 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
98feq1d 6068 . . 3 (𝐹𝑅 → (𝐹:𝐷𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷))
107, 9mpbird 247 . 2 (𝐹𝑅𝐹:𝐷𝐷)
111, 2pmtrfinv 17927 . 2 (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))
1210, 10, 11, 11fcof1od 6589 1 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  wss 3607   class class class wbr 4685   I cid 5052  dom cdm 5143  ran crn 5144  wf 5922  1-1-ontowf1o 5925  cfv 5926  2𝑜c2o 7599  cen 7994  pmTrspcpmtr 17907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pmtr 17908
This theorem is referenced by:  pmtrfb  17931  pmtrfconj  17932  symgtrf  17935  psgnunilem1  17959  psgnfzto1stlem  29978  pmtridf1o  29984
  Copyright terms: Public domain W3C validator