MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfconj Structured version   Visualization version   GIF version

Theorem pmtrfconj 17932
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfconj ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)

Proof of Theorem pmtrfconj
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
31, 2pmtrfb 17931 . . . 4 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜))
43simp1bi 1096 . . 3 (𝐹𝑅𝐷 ∈ V)
54adantr 480 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐷 ∈ V)
6 simpr 476 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
71, 2pmtrff1o 17929 . . . . 5 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
87adantr 480 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷1-1-onto𝐷)
9 f1oco 6197 . . . 4 ((𝐺:𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
106, 8, 9syl2anc 694 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺𝐹):𝐷1-1-onto𝐷)
11 f1ocnv 6187 . . . 4 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷)
1211adantl 481 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1-onto𝐷)
13 f1oco 6197 . . 3 (((𝐺𝐹):𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
1410, 12, 13syl2anc 694 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷)
15 f1of 6175 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
167, 15syl 17 . . . . . 6 (𝐹𝑅𝐹:𝐷𝐷)
1716adantr 480 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐹:𝐷𝐷)
18 f1omvdconj 17912 . . . . 5 ((𝐹:𝐷𝐷𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
1917, 6, 18syl2anc 694 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I )))
20 f1of1 6174 . . . . . 6 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1𝐷)
2120adantl 481 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → 𝐺:𝐷1-1𝐷)
22 difss 3770 . . . . . . . 8 (𝐹 ∖ I ) ⊆ 𝐹
23 dmss 5355 . . . . . . . 8 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2422, 23ax-mp 5 . . . . . . 7 dom (𝐹 ∖ I ) ⊆ dom 𝐹
25 fdm 6089 . . . . . . 7 (𝐹:𝐷𝐷 → dom 𝐹 = 𝐷)
2624, 25syl5sseq 3686 . . . . . 6 (𝐹:𝐷𝐷 → dom (𝐹 ∖ I ) ⊆ 𝐷)
2717, 26syl 17 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ⊆ 𝐷)
285, 27ssexd 4838 . . . . 5 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ∈ V)
29 f1imaeng 8057 . . . . 5 ((𝐺:𝐷1-1𝐷 ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ∈ V) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
3021, 27, 28, 29syl3anc 1366 . . . 4 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → (𝐺 “ dom (𝐹 ∖ I )) ≈ dom (𝐹 ∖ I ))
3119, 30eqbrtrd 4707 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ))
323simp3bi 1098 . . . 4 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2𝑜)
3332adantr 480 . . 3 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (𝐹 ∖ I ) ≈ 2𝑜)
34 entr 8049 . . 3 ((dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2𝑜)
3531, 33, 34syl2anc 694 . 2 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2𝑜)
361, 2pmtrfb 17931 . 2 (((𝐺𝐹) ∘ 𝐺) ∈ 𝑅 ↔ (𝐷 ∈ V ∧ ((𝐺𝐹) ∘ 𝐺):𝐷1-1-onto𝐷 ∧ dom (((𝐺𝐹) ∘ 𝐺) ∖ I ) ≈ 2𝑜))
375, 14, 35, 36syl3anbrc 1265 1 ((𝐹𝑅𝐺:𝐷1-1-onto𝐷) → ((𝐺𝐹) ∘ 𝐺) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  wss 3607   class class class wbr 4685   I cid 5052  ccnv 5142  dom cdm 5143  ran crn 5144  cima 5146  ccom 5147  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  2𝑜c2o 7599  cen 7994  pmTrspcpmtr 17907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pmtr 17908
This theorem is referenced by:  psgnunilem1  17959
  Copyright terms: Public domain W3C validator