MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem4 Structured version   Visualization version   GIF version

Theorem pmtrdifellem4 17880
Description: Lemma 4 for pmtrdifel 17881. (Contributed by AV, 28-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem4 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)

Proof of Theorem pmtrdifellem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
41, 2, 3pmtrdifellem1 17877 . . 3 (𝑄𝑇𝑆𝑅)
5 eqid 2620 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
6 eqid 2620 . . . 4 dom (𝑆 ∖ I ) = dom (𝑆 ∖ I )
75, 2, 6pmtrffv 17860 . . 3 ((𝑆𝑅𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
84, 7sylan 488 . 2 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
9 eqid 2620 . . . . . . . 8 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
10 eqid 2620 . . . . . . . 8 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
111, 9, 10symgtrf 17870 . . . . . . 7 𝑇 ⊆ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
1211sseli 3591 . . . . . 6 (𝑄𝑇𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
139, 10symgbasf 17785 . . . . . 6 (𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
14 ffn 6032 . . . . . . 7 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → 𝑄 Fn (𝑁 ∖ {𝐾}))
15 fndifnfp 6427 . . . . . . 7 (𝑄 Fn (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
16 ssrab2 3679 . . . . . . . . . 10 {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾})
17 ssel2 3590 . . . . . . . . . . 11 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → 𝐾 ∈ (𝑁 ∖ {𝐾}))
18 eldif 3577 . . . . . . . . . . . 12 (𝐾 ∈ (𝑁 ∖ {𝐾}) ↔ (𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}))
19 elsng 4182 . . . . . . . . . . . . . . 15 (𝐾𝑁 → (𝐾 ∈ {𝐾} ↔ 𝐾 = 𝐾))
2019notbid 308 . . . . . . . . . . . . . 14 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} ↔ ¬ 𝐾 = 𝐾))
21 eqid 2620 . . . . . . . . . . . . . . 15 𝐾 = 𝐾
2221pm2.24i 146 . . . . . . . . . . . . . 14 𝐾 = 𝐾 → ¬ 𝐾𝑁)
2320, 22syl6bi 243 . . . . . . . . . . . . 13 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} → ¬ 𝐾𝑁))
2423imp 445 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}) → ¬ 𝐾𝑁)
2518, 24sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝐾𝑁)
2617, 25syl 17 . . . . . . . . . 10 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → ¬ 𝐾𝑁)
2716, 26mpan 705 . . . . . . . . 9 (𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → ¬ 𝐾𝑁)
2827con2i 134 . . . . . . . 8 (𝐾𝑁 → ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
29 eleq2 2688 . . . . . . . . 9 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾 ∈ dom (𝑄 ∖ I ) ↔ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3029notbid 308 . . . . . . . 8 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (¬ 𝐾 ∈ dom (𝑄 ∖ I ) ↔ ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3128, 30syl5ibr 236 . . . . . . 7 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3214, 15, 313syl 18 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3312, 13, 323syl 18 . . . . 5 (𝑄𝑇 → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3433imp 445 . . . 4 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑄 ∖ I ))
351, 2, 3pmtrdifellem2 17878 . . . . . 6 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
3635eleq2d 2685 . . . . 5 (𝑄𝑇 → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3736adantr 481 . . . 4 ((𝑄𝑇𝐾𝑁) → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3834, 37mtbird 315 . . 3 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑆 ∖ I ))
3938iffalsed 4088 . 2 ((𝑄𝑇𝐾𝑁) → if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾) = 𝐾)
408, 39eqtrd 2654 1 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  {crab 2913  cdif 3564  wss 3567  ifcif 4077  {csn 4168   cuni 4427   I cid 5013  dom cdm 5104  ran crn 5105   Fn wfn 5871  wf 5872  cfv 5876  Basecbs 15838  SymGrpcsymg 17778  pmTrspcpmtr 17842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-plusg 15935  df-tset 15941  df-symg 17779  df-pmtr 17843
This theorem is referenced by:  pmtrdifwrdel2lem1  17885
  Copyright terms: Public domain W3C validator