Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncomlem1 Structured version   Visualization version   GIF version

Theorem pmtr3ncomlem1 18113
 Description: Lemma 1 for pmtr3ncom 18115. (Contributed by AV, 17-Mar-2018.)
Hypotheses
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
pmtr3ncom.f 𝐹 = (𝑇‘{𝑋, 𝑌})
pmtr3ncom.g 𝐺 = (𝑇‘{𝑌, 𝑍})
Assertion
Ref Expression
pmtr3ncomlem1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))

Proof of Theorem pmtr3ncomlem1
StepHypRef Expression
1 necom 2985 . . . . 5 (𝑌𝑍𝑍𝑌)
21biimpi 206 . . . 4 (𝑌𝑍𝑍𝑌)
323ad2ant3 1130 . . 3 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
433ad2ant3 1130 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
5 simp1 1131 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
6 simp1 1131 . . . . . . . . . 10 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
763ad2ant2 1129 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
8 simp2 1132 . . . . . . . . . 10 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑌𝐷)
983ad2ant2 1129 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
10 prssi 4498 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷) → {𝑋, 𝑌} ⊆ 𝐷)
117, 9, 10syl2anc 696 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
12 simp1 1131 . . . . . . . . . . 11 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
13123ad2ant3 1130 . . . . . . . . . 10 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝑌)
147, 9, 133jca 1123 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑋𝐷𝑌𝐷𝑋𝑌))
15 pr2nelem 9037 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2𝑜)
1614, 15syl 17 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2𝑜)
175, 11, 163jca 1123 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2𝑜))
18 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
1918pmtrf 18095 . . . . . . 7 ((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2𝑜) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
2017, 19syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
21 pmtr3ncom.f . . . . . . 7 𝐹 = (𝑇‘{𝑋, 𝑌})
2221feq1i 6197 . . . . . 6 (𝐹:𝐷𝐷 ↔ (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
2320, 22sylibr 224 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹:𝐷𝐷)
24 ffn 6206 . . . . 5 (𝐹:𝐷𝐷𝐹 Fn 𝐷)
2523, 24syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹 Fn 𝐷)
26 fvco2 6436 . . . 4 ((𝐹 Fn 𝐷𝑋𝐷) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2725, 7, 26syl2anc 696 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2821fveq1i 6354 . . . . 5 (𝐹𝑋) = ((𝑇‘{𝑋, 𝑌})‘𝑋)
2918pmtrprfv 18093 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
305, 14, 29syl2anc 696 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
3128, 30syl5eq 2806 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹𝑋) = 𝑌)
3231fveq2d 6357 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺‘(𝐹𝑋)) = (𝐺𝑌))
33 pmtr3ncom.g . . . . 5 𝐺 = (𝑇‘{𝑌, 𝑍})
3433fveq1i 6354 . . . 4 (𝐺𝑌) = ((𝑇‘{𝑌, 𝑍})‘𝑌)
35 simp3 1133 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑍𝐷)
36353ad2ant2 1129 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
37 simp3 1133 . . . . . . 7 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑌𝑍)
38373ad2ant3 1130 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝑍)
399, 36, 383jca 1123 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑌𝐷𝑍𝐷𝑌𝑍))
4018pmtrprfv 18093 . . . . 5 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
415, 39, 40syl2anc 696 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
4234, 41syl5eq 2806 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑌) = 𝑍)
4327, 32, 423eqtrd 2798 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = 𝑍)
44 prssi 4498 . . . . . . . . 9 ((𝑌𝐷𝑍𝐷) → {𝑌, 𝑍} ⊆ 𝐷)
458, 35, 44syl2anc 696 . . . . . . . 8 ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑌, 𝑍} ⊆ 𝐷)
46453ad2ant2 1129 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ⊆ 𝐷)
47 pr2nelem 9037 . . . . . . . 8 ((𝑌𝐷𝑍𝐷𝑌𝑍) → {𝑌, 𝑍} ≈ 2𝑜)
4839, 47syl 17 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ≈ 2𝑜)
495, 46, 483jca 1123 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2𝑜))
5018pmtrf 18095 . . . . . . 7 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2𝑜) → (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
5133feq1i 6197 . . . . . . 7 (𝐺:𝐷𝐷 ↔ (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
5250, 51sylibr 224 . . . . . 6 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2𝑜) → 𝐺:𝐷𝐷)
5349, 52syl 17 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺:𝐷𝐷)
54 ffn 6206 . . . . 5 (𝐺:𝐷𝐷𝐺 Fn 𝐷)
5553, 54syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺 Fn 𝐷)
56 fvco2 6436 . . . 4 ((𝐺 Fn 𝐷𝑋𝐷) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5755, 7, 56syl2anc 696 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5833fveq1i 6354 . . . . 5 (𝐺𝑋) = ((𝑇‘{𝑌, 𝑍})‘𝑋)
59 id 22 . . . . . 6 (𝐷𝑉𝐷𝑉)
60 3anrot 1087 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) ↔ (𝑌𝐷𝑍𝐷𝑋𝐷))
6160biimpi 206 . . . . . 6 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑌𝐷𝑍𝐷𝑋𝐷))
62 3anrot 1087 . . . . . . 7 ((𝑌𝑍𝑌𝑋𝑍𝑋) ↔ (𝑌𝑋𝑍𝑋𝑌𝑍))
63 necom 2985 . . . . . . . 8 (𝑌𝑋𝑋𝑌)
64 necom 2985 . . . . . . . 8 (𝑍𝑋𝑋𝑍)
65 biid 251 . . . . . . . 8 (𝑌𝑍𝑌𝑍)
6663, 64, 653anbi123i 1159 . . . . . . 7 ((𝑌𝑋𝑍𝑋𝑌𝑍) ↔ (𝑋𝑌𝑋𝑍𝑌𝑍))
6762, 66sylbbr 226 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → (𝑌𝑍𝑌𝑋𝑍𝑋))
6818pmtrprfv3 18094 . . . . . 6 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑋𝐷) ∧ (𝑌𝑍𝑌𝑋𝑍𝑋)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
6959, 61, 67, 68syl3an 1164 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
7058, 69syl5eq 2806 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑋) = 𝑋)
7170fveq2d 6357 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹‘(𝐺𝑋)) = (𝐹𝑋))
7257, 71, 313eqtrd 2798 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = 𝑌)
734, 43, 723netr4d 3009 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ⊆ wss 3715  {cpr 4323   class class class wbr 4804   ∘ ccom 5270   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  2𝑜c2o 7724   ≈ cen 8120  pmTrspcpmtr 18081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-1o 7730  df-2o 7731  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pmtr 18082 This theorem is referenced by:  pmtr3ncomlem2  18114
 Copyright terms: Public domain W3C validator