MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncom Structured version   Visualization version   GIF version

Theorem pmtr3ncom 17941
Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtr3ncom ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Distinct variable groups:   𝐷,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem pmtr3ncom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashge3el3dif 13306 . 2 ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
2 simprl 809 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → 𝐷𝑉)
3 prssi 4385 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
43adantr 480 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
54ad2antrr 762 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑥, 𝑦} ⊆ 𝐷)
6 simplll 813 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝐷)
7 simplr 807 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → 𝑦𝐷)
87adantr 480 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝐷)
9 simpr1 1087 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝑦)
10 pr2nelem 8865 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑥𝑦) → {𝑥, 𝑦} ≈ 2𝑜)
116, 8, 9, 10syl3anc 1366 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑥, 𝑦} ≈ 2𝑜)
1211adantr 480 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑥, 𝑦} ≈ 2𝑜)
13 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
14 eqid 2651 . . . . . . . 8 ran 𝑇 = ran 𝑇
1513, 14pmtrrn 17923 . . . . . . 7 ((𝐷𝑉 ∧ {𝑥, 𝑦} ⊆ 𝐷 ∧ {𝑥, 𝑦} ≈ 2𝑜) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
162, 5, 12, 15syl3anc 1366 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
17 prssi 4385 . . . . . . . . 9 ((𝑦𝐷𝑧𝐷) → {𝑦, 𝑧} ⊆ 𝐷)
1817adantll 750 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → {𝑦, 𝑧} ⊆ 𝐷)
1918ad2antrr 762 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑦, 𝑧} ⊆ 𝐷)
20 simplr 807 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑧𝐷)
21 simpr3 1089 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝑧)
22 pr2nelem 8865 . . . . . . . . 9 ((𝑦𝐷𝑧𝐷𝑦𝑧) → {𝑦, 𝑧} ≈ 2𝑜)
238, 20, 21, 22syl3anc 1366 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑦, 𝑧} ≈ 2𝑜)
2423adantr 480 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑦, 𝑧} ≈ 2𝑜)
2513, 14pmtrrn 17923 . . . . . . 7 ((𝐷𝑉 ∧ {𝑦, 𝑧} ⊆ 𝐷 ∧ {𝑦, 𝑧} ≈ 2𝑜) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
262, 19, 24, 25syl3anc 1366 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
27 df-3an 1056 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑧𝐷) ↔ ((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷))
2827biimpri 218 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → (𝑥𝐷𝑦𝐷𝑧𝐷))
2928ad2antrr 762 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑥𝐷𝑦𝐷𝑧𝐷))
30 simplr 807 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑥𝑦𝑥𝑧𝑦𝑧))
31 eqid 2651 . . . . . . . 8 (𝑇‘{𝑥, 𝑦}) = (𝑇‘{𝑥, 𝑦})
32 eqid 2651 . . . . . . . 8 (𝑇‘{𝑦, 𝑧}) = (𝑇‘{𝑦, 𝑧})
3313, 31, 32pmtr3ncomlem2 17940 . . . . . . 7 ((𝐷𝑉 ∧ (𝑥𝐷𝑦𝐷𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
342, 29, 30, 33syl3anc 1366 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
35 coeq2 5313 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑔𝑓) = (𝑔 ∘ (𝑇‘{𝑥, 𝑦})))
36 coeq1 5312 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑓𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔))
3735, 36neeq12d 2884 . . . . . . 7 (𝑓 = (𝑇‘{𝑥, 𝑦}) → ((𝑔𝑓) ≠ (𝑓𝑔) ↔ (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔)))
38 coeq1 5312 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) = ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})))
39 coeq2 5313 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
4038, 39neeq12d 2884 . . . . . . 7 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) ↔ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))))
4137, 40rspc2ev 3355 . . . . . 6 (((𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇 ∧ (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇 ∧ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4216, 26, 34, 41syl3anc 1366 . . . . 5 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4342exp31 629 . . . 4 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → ((𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4443rexlimdva 3060 . . 3 ((𝑥𝐷𝑦𝐷) → (∃𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4544rexlimivv 3065 . 2 (∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔)))
461, 45mpcom 38 1 ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  wss 3607  {cpr 4212   class class class wbr 4685  ran crn 5144  ccom 5147  cfv 5926  2𝑜c2o 7599  cen 7994  cle 10113  3c3 11109  #chash 13157  pmTrspcpmtr 17907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-pmtr 17908
This theorem is referenced by:  pgrpgt2nabl  42472
  Copyright terms: Public domain W3C validator