Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapocjN Structured version   Visualization version   GIF version

Theorem pmapocjN 35738
Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapocj.b 𝐵 = (Base‘𝐾)
pmapocj.j = (join‘𝐾)
pmapocj.m = (meet‘𝐾)
pmapocj.o = (oc‘𝐾)
pmapocj.f 𝐹 = (pmap‘𝐾)
pmapocj.p + = (+𝑃𝐾)
pmapocj.r 𝑁 = (⊥𝑃𝐾)
Assertion
Ref Expression
pmapocjN ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))

Proof of Theorem pmapocjN
StepHypRef Expression
1 pmapocj.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapocj.j . . . 4 = (join‘𝐾)
3 pmapocj.f . . . 4 𝐹 = (pmap‘𝐾)
4 pmapocj.p . . . 4 + = (+𝑃𝐾)
5 pmapocj.r . . . 4 𝑁 = (⊥𝑃𝐾)
61, 2, 3, 4, 5pmapj2N 35737 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) = (𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌)))))
76fveq2d 6335 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))))
8 simp1 1128 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
9 hllat 35172 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
101, 2latjcl 17265 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
119, 10syl3an1 1164 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
12 pmapocj.o . . . 4 = (oc‘𝐾)
131, 12, 3, 5polpmapN 35720 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
148, 11, 13syl2anc 693 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
15 eqid 2769 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
161, 15, 3pmapssat 35567 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
17163adant3 1124 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
181, 15, 3pmapssat 35567 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
19183adant2 1123 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2015, 4paddssat 35622 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
218, 17, 19, 20syl3anc 1474 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
2215, 53polN 35724 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾)) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
238, 21, 22syl2anc 693 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
247, 14, 233eqtr3d 2811 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1069   = wceq 1629  wcel 2143  wss 3720  cfv 6030  (class class class)co 6791  Basecbs 16070  occoc 16163  joincjn 17158  meetcmee 17159  Latclat 17259  Atomscatm 35072  HLchlt 35159  pmapcpmap 35305  +𝑃cpadd 35603  𝑃cpolN 35710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-iun 4653  df-iin 4654  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-undef 7549  df-preset 17142  df-poset 17160  df-plt 17172  df-lub 17188  df-glb 17189  df-join 17190  df-meet 17191  df-p0 17253  df-p1 17254  df-lat 17260  df-clat 17322  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-polarityN 35711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator