Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapat Structured version   Visualization version   GIF version

Theorem pmapat 35570
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapat.a 𝐴 = (Atoms‘𝐾)
pmapat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapat ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})

Proof of Theorem pmapat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmapat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2atbase 35097 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4 eqid 2760 . . . 4 (le‘𝐾) = (le‘𝐾)
5 pmapat.m . . . 4 𝑀 = (pmap‘𝐾)
61, 4, 2, 5pmapval 35564 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
73, 6sylan2 492 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
8 hlatl 35168 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
98ad2antrr 764 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
10 simpr 479 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
11 simplr 809 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑃𝐴)
124, 2atcmp 35119 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
139, 10, 11, 12syl3anc 1477 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
1413rabbidva 3328 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞(le‘𝐾)𝑃} = {𝑞𝐴𝑞 = 𝑃})
15 rabsn 4400 . . 3 (𝑃𝐴 → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
1615adantl 473 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
177, 14, 163eqtrd 2798 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  {crab 3054  {csn 4321   class class class wbr 4804  cfv 6049  Basecbs 16079  lecple 16170  Atomscatm 35071  AtLatcal 35072  HLchlt 35158  pmapcpmap 35304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-preset 17149  df-poset 17167  df-plt 17179  df-glb 17196  df-p0 17260  df-lat 17267  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-pmap 35311
This theorem is referenced by:  elpmapat  35571  2polatN  35739  paddatclN  35756
  Copyright terms: Public domain W3C validator