Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap11 Structured version   Visualization version   GIF version

Theorem pmap11 35570
Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmap11.b 𝐵 = (Base‘𝐾)
pmap11.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem pmap11
StepHypRef Expression
1 hllat 35172 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 pmap11.b . . . . 5 𝐵 = (Base‘𝐾)
3 eqid 2761 . . . . 5 (le‘𝐾) = (le‘𝐾)
42, 3latasymb 17276 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
51, 4syl3an1 1167 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
6 pmap11.m . . . . 5 𝑀 = (pmap‘𝐾)
72, 3, 6pmaple 35569 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))
82, 3, 6pmaple 35569 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀𝑌) ⊆ (𝑀𝑋)))
983com23 1121 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀𝑌) ⊆ (𝑀𝑋)))
107, 9anbi12d 749 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋))))
115, 10bitr3d 270 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋))))
12 eqss 3760 . 2 ((𝑀𝑋) = (𝑀𝑌) ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋)))
1311, 12syl6rbbr 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wss 3716   class class class wbr 4805  cfv 6050  Basecbs 16080  lecple 16171  Latclat 17267  HLchlt 35159  pmapcpmap 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-preset 17150  df-poset 17168  df-plt 17180  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p0 17261  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-pmap 35312
This theorem is referenced by:  pmapeq0  35574  isline3  35584  lncvrelatN  35589
  Copyright terms: Public domain W3C validator