![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap0 | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
pmap0.z | ⊢ 0 = (0.‘𝐾) |
pmap0.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmap0 | ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | pmap0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
3 | 1, 2 | atl0cl 35112 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
4 | eqid 2771 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2771 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | pmap0.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
7 | 1, 4, 5, 6 | pmapval 35565 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
8 | 3, 7 | mpdan 667 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
9 | 4, 2, 5 | atnle0 35118 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 ) |
10 | 9 | nrexdv 3149 | . . . 4 ⊢ (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) |
11 | rabn0 4104 | . . . 4 ⊢ ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) | |
12 | 10, 11 | sylnibr 318 | . . 3 ⊢ (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅) |
13 | nne 2947 | . . 3 ⊢ (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) | |
14 | 12, 13 | sylib 208 | . 2 ⊢ (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) |
15 | 8, 14 | eqtrd 2805 | 1 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 {crab 3065 ∅c0 4063 class class class wbr 4786 ‘cfv 6031 Basecbs 16064 lecple 16156 0.cp0 17245 Atomscatm 35072 AtLatcal 35073 pmapcpmap 35305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-preset 17136 df-poset 17154 df-plt 17166 df-glb 17183 df-p0 17247 df-lat 17254 df-covers 35075 df-ats 35076 df-atl 35107 df-pmap 35312 |
This theorem is referenced by: pmapeq0 35574 pmapjat1 35661 pol1N 35718 pnonsingN 35741 |
Copyright terms: Public domain | W3C validator |