![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version |
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 349 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | 1 | bicomd 213 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: imim21b 381 dvelimdf 2366 2sb6rf 2480 elabgt 3379 sbceqal 3520 dffun8 5954 ordiso2 8461 ordtypelem7 8470 cantnf 8628 rankonidlem 8729 dfac12lem3 9005 dcomex 9307 indstr2 11805 dfgcd2 15310 lublecllem 17035 tsmsgsum 21989 tsmsres 21994 tsmsxplem1 22003 caucfil 23127 isarchiofld 29945 wl-nfimf1 33443 tendoeq2 36379 elmapintrab 38199 inintabd 38202 cnvcnvintabd 38223 cnvintabd 38226 relexp0eq 38310 ntrkbimka 38653 ntrk0kbimka 38654 pm10.52 38881 |
Copyright terms: Public domain | W3C validator |