![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 2 | con3d 148 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
5 | 4 | con3d 148 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | pm5.21im 363 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
8 | 1, 7 | pm2.61d 170 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: pm5.21nd 961 sbcrext 3544 rmob 3562 oteqex 4993 epelg 5059 eqbrrdva 5324 relbrcnvg 5539 ordsucuniel 7066 ordsucun 7067 brtpos2 7403 eceqoveq 7895 elpmg 7915 elfi2 8361 brwdom 8513 brwdomn0 8515 rankr1c 8722 r1pwcl 8748 ttukeylem1 9369 fpwwe2lem9 9498 eltskm 9703 recmulnq 9824 clim 14269 rlim 14270 lo1o1 14307 o1lo1 14312 o1lo12 14313 rlimresb 14340 lo1eq 14343 rlimeq 14344 isercolllem2 14440 caucvgb 14454 saddisj 15234 sadadd 15236 sadass 15240 bitsshft 15244 smupvallem 15252 smumul 15262 catpropd 16416 isssc 16527 issubc 16542 funcres2b 16604 funcres2c 16608 mndpropd 17363 issubg3 17659 resghm2b 17725 resscntz 17810 elsymgbas 17848 odmulg 18019 dmdprd 18443 dprdw 18455 subgdmdprd 18479 lmodprop2d 18973 lssacs 19015 assapropd 19375 psrbaglefi 19420 prmirred 19891 lindfmm 20214 lsslindf 20217 islinds3 20221 cnrest2 21138 cnprest 21141 cnprest2 21142 lmss 21150 isfildlem 21708 isfcls 21860 elutop 22084 metustel 22402 blval2 22414 dscopn 22425 iscau2 23121 causs 23142 ismbf 23442 ismbfcn 23443 iblcnlem 23600 limcdif 23685 limcres 23695 limcun 23704 dvres 23720 q1peqb 23959 ulmval 24179 ulmres 24187 chpchtsum 24989 dchrisum0lem1 25250 axcontlem5 25893 iswlkg 26565 issiga 30302 ismeas 30390 elcarsg 30495 cvmlift3lem4 31430 msrrcl 31566 brcolinear2 32290 topfneec 32475 cnpwstotbnd 33726 ismtyima 33732 ismndo2 33803 isrngo 33826 lshpkr 34722 elrfi 37574 climf 40172 climf2 40216 isupwlkg 42043 |
Copyright terms: Public domain | W3C validator |