![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71r 666 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: biadan2 677 anabs7 887 orabs 936 prlem2 1044 eu5 2629 2moswap 2681 exsnrex 4361 eliunxp 5411 asymref 5666 dffun9 6074 funcnv 6115 funcnv3 6116 f1ompt 6541 eufnfv 6650 dff1o6 6690 dfom2 7228 elxp4 7271 elxp5 7272 abexex 7312 dfoprab4 7388 tpostpos 7537 brwitnlem 7752 erovlem 8006 elixp2 8074 xpsnen 8205 elom3 8714 cardval2 9003 isinfcard 9101 infmap2 9228 elznn0nn 11579 zrevaddcl 11610 qrevaddcl 11999 hash2prb 13442 cotr2g 13912 climreu 14482 isprm3 15594 hashbc0 15907 imasleval 16399 isssc 16677 isgim 17901 eldprd 18599 brric2 18943 islmim 19260 tgval2 20958 eltg2b 20961 snfil 21865 isms2 22452 setsms 22482 elii1 22931 phtpcer 22991 elovolm 23439 ellimc2 23836 limcun 23854 1cubr 24764 fsumvma2 25134 dchrelbas3 25158 2lgslem1b 25312 nbgrel 26428 rusgrnumwwlks 27092 isgrpo 27656 mdsl2i 29486 cvmdi 29488 rabfmpunirn 29758 eulerpartlemn 30748 bnj580 31286 bnj1049 31345 snmlval 31616 elmthm 31776 imaindm 31983 dmscut 32220 madeval2 32238 brtxp2 32290 brpprod3a 32295 ismgmOLD 33958 brres2 34355 brxrn2 34456 prtlem100 34644 islln2 35296 islpln2 35321 islvol2 35365 elmapintrab 38380 clcnvlem 38428 sprvalpw 42236 sprvalpwn0 42239 eliunxp2 42618 elbigo 42851 |
Copyright terms: Public domain | W3C validator |