![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71 665 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | sylib 208 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: difin2 4033 resopab2 5606 ordtri3 5920 fcnvres 6243 resoprab2 6923 psgnran 18155 efgcpbllemb 18388 cndis 21317 cnindis 21318 cnpdis 21319 blpnf 22423 dscopn 22599 itgcn 23828 limcnlp 23861 nb3gr2nb 26505 uspgr2wlkeq 26773 upgrspthswlk 26865 wspthsnwspthsnon 27055 wspthsnwspthsnonOLD 27057 wpthswwlks2on 27103 wpthswwlks2onOLD 27104 1stpreima 29814 fsumcvg4 30326 mbfmcnt 30660 topdifinffinlem 33524 phpreu 33724 ptrest 33739 rngosn3 34054 isidlc 34145 dih1 37095 lzunuz 37851 fsovrfovd 38823 uneqsn 38841 |
Copyright terms: Public domain | W3C validator |