MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.39 Structured version   Visualization version   GIF version

Theorem pm4.39 961
Description: Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.39 (((𝜑𝜒) ∧ (𝜓𝜃)) → ((𝜑𝜓) ↔ (𝜒𝜃)))

Proof of Theorem pm4.39
StepHypRef Expression
1 simpl 468 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → (𝜑𝜒))
2 simpr 471 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → (𝜓𝜃))
31, 2orbi12d 904 1 (((𝜑𝜒) ∧ (𝜓𝜃)) → ((𝜑𝜓) ↔ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837
This theorem is referenced by:  3orbi123VD  39607
  Copyright terms: Public domain W3C validator