MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.43 Structured version   Visualization version   GIF version

Theorem pm3.43 924
Description: Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.43 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm3.43
StepHypRef Expression
1 pm3.43i 471 . 2 ((𝜑𝜓) → ((𝜑𝜒) → (𝜑 → (𝜓𝜒))))
21imp 444 1 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by:  jcab  925  eqvincg  3360  bnj1110  31176  jm2.18  37872  jm2.15nn0  37887  jm2.16nn0  37888  cotrintab  38238
  Copyright terms: Public domain W3C validator