Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2an3OLD Structured version   Visualization version   GIF version

Theorem pm3.2an3OLD 1239
 Description: Obsolete proof of pm3.2an3 1238 as of 24-Apr-2021. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pm3.2an3OLD (𝜑 → (𝜓 → (𝜒 → (𝜑𝜓𝜒))))

Proof of Theorem pm3.2an3OLD
StepHypRef Expression
1 pm3.2 463 . . 3 ((𝜑𝜓) → (𝜒 → ((𝜑𝜓) ∧ 𝜒)))
21ex 450 . 2 (𝜑 → (𝜓 → (𝜒 → ((𝜑𝜓) ∧ 𝜒))))
3 df-3an 1038 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
43bicomi 214 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜓𝜒))
52, 4syl8ib 246 1 (𝜑 → (𝜓 → (𝜒 → (𝜑𝜓𝜒))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator