MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpghm Structured version   Visualization version   GIF version

Theorem pm2mpghm 20669
Description: The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1𝑅)
pm2mpfo.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐵 = (Base‘𝐶)
pm2mpfo.m = ( ·𝑠𝑄)
pm2mpfo.e = (.g‘(mulGrp‘𝑄))
pm2mpfo.x 𝑋 = (var1𝐴)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1𝐴)
pm2mpfo.l 𝐿 = (Base‘𝑄)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))

Proof of Theorem pm2mpghm
Dummy variables 𝑘 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpfo.b . 2 𝐵 = (Base‘𝐶)
2 pm2mpfo.l . 2 𝐿 = (Base‘𝑄)
3 eqid 2651 . 2 (+g𝐶) = (+g𝐶)
4 eqid 2651 . 2 (+g𝑄) = (+g𝑄)
5 pm2mpfo.p . . . 4 𝑃 = (Poly1𝑅)
6 pm2mpfo.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 20546 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringgrp 18598 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
97, 8syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
10 pm2mpfo.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
1110matring 20297 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
12 pm2mpfo.q . . . . 5 𝑄 = (Poly1𝐴)
1312ply1ring 19666 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
1411, 13syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
15 ringgrp 18598 . . 3 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
1614, 15syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Grp)
17 pm2mpfo.m . . 3 = ( ·𝑠𝑄)
18 pm2mpfo.e . . 3 = (.g‘(mulGrp‘𝑄))
19 pm2mpfo.x . . 3 𝑋 = (var1𝐴)
20 pm2mpfo.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
215, 6, 1, 17, 18, 19, 10, 12, 20, 2pm2mpf 20651 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
22 ringmnd 18602 . . . . . . . . . . . . . 14 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
237, 22syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
2423anim1i 591 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
25 3anass 1059 . . . . . . . . . . . 12 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) ↔ (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
2624, 25sylibr 224 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵))
271, 3mndcl 17348 . . . . . . . . . . 11 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
296, 1decpmatval 20618 . . . . . . . . . 10 (((𝑎(+g𝐶)𝑏) ∈ 𝐵𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
3028, 29sylan 487 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
31 simplll 813 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ Fin)
32 fvexd 6241 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V)
33 fvexd 6241 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V)
34 eqidd 2652 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
35 eqidd 2652 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
3631, 31, 32, 33, 34, 35offval22 7298 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘𝑓 (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
37 eqid 2651 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2651 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
39 simpllr 815 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
40 simprl 809 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
41 simprr 811 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
421eleq2i 2722 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4342biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4443ad2antlr 763 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑎 ∈ (Base‘𝐶))
45 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
466, 45matecl 20279 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝐶)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4740, 41, 44, 46syl3anc 1366 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4847ex 449 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
4948adantrr 753 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
5049adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
51503impib 1281 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
52 simpr 476 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
53523ad2ant1 1102 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
54 eqid 2651 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑎𝑗)) = (coe1‘(𝑖𝑎𝑗))
5554, 45, 5, 37coe1fvalcl 19630 . . . . . . . . . . . . 13 (((𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5651, 53, 55syl2anc 694 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5710, 37, 38, 31, 39, 56matbas2d 20277 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴))
58 simprl 809 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
59 simprr 811 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
601eleq2i 2722 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6160biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6261ad2antlr 763 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑏 ∈ (Base‘𝐶))
636, 45matecl 20279 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝐶)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6458, 59, 62, 63syl3anc 1366 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6564ex 449 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6665adantrl 752 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6766adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
68673impib 1281 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
69 eqid 2651 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑏𝑗)) = (coe1‘(𝑖𝑏𝑗))
7069, 45, 5, 37coe1fvalcl 19630 . . . . . . . . . . . . 13 (((𝑖𝑏𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7168, 53, 70syl2anc 694 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7210, 37, 38, 31, 39, 71matbas2d 20277 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴))
73 eqid 2651 . . . . . . . . . . . 12 (+g𝐴) = (+g𝐴)
74 eqid 2651 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
7510, 38, 73, 74matplusg2 20281 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘𝑓 (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
7657, 72, 75syl2anc 694 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘𝑓 (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
77 simplr 807 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎𝐵𝑏𝐵))
7877anim1i 591 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
79783impb 1279 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
80 eqid 2651 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
816, 1, 3, 80matplusgcell 20287 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8279, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8382fveq2d 6233 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗)) = (coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗))))
8483fveq1d 6231 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘))
85393ad2ant1 1102 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
865, 45, 80, 74coe1addfv 19683 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ (𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ (𝑖𝑏𝑗) ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ℕ0) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8785, 51, 68, 53, 86syl31anc 1369 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8884, 87eqtrd 2685 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8988mpt2eq3dva 6761 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9036, 76, 893eqtr4rd 2696 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9112ply1sca 19671 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
9211, 91syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
9392ad2antrr 762 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
9493fveq2d 6233 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (+g𝐴) = (+g‘(Scalar‘𝑄)))
95 simprl 809 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
966, 1decpmatval 20618 . . . . . . . . . . . 12 ((𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9795, 96sylan 487 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9897eqcomd 2657 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑎 decompPMat 𝑘))
99 simprr 811 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
1006, 1decpmatval 20618 . . . . . . . . . . . 12 ((𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
10199, 100sylan 487 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
102101eqcomd 2657 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑏 decompPMat 𝑘))
10394, 98, 102oveq123d 6711 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
10430, 90, 1033eqtrd 2689 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
105104oveq1d 6705 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)))
10612ply1lmod 19670 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
10711, 106syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
108107ad2antrr 762 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
109 simpl 472 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑎𝐵)
110109ad2antlr 763 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑎𝐵)
1115, 6, 1, 10, 38decpmatcl 20620 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11239, 110, 52, 111syl3anc 1366 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11392eqcomd 2657 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑄) = 𝐴)
114113ad2antrr 762 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
115114fveq2d 6233 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
116112, 115eleqtrrd 2733 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
117 simpr 476 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑏𝐵)
118117ad2antlr 763 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑏𝐵)
1195, 6, 1, 10, 38decpmatcl 20620 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
12039, 118, 52, 119syl3anc 1366 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
121120, 115eleqtrrd 2733 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
122 eqid 2651 . . . . . . . . . . . 12 (mulGrp‘𝑄) = (mulGrp‘𝑄)
123122ringmgp 18599 . . . . . . . . . . 11 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
12414, 123syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
125124ad2antrr 762 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
12619, 12, 2vr1cl 19635 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑋𝐿)
12711, 126syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋𝐿)
128127ad2antrr 762 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐿)
129122, 2mgpbas 18541 . . . . . . . . . 10 𝐿 = (Base‘(mulGrp‘𝑄))
130129, 18mulgnn0cl 17605 . . . . . . . . 9 (((mulGrp‘𝑄) ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐿) → (𝑘 𝑋) ∈ 𝐿)
131125, 52, 128, 130syl3anc 1366 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
132 eqid 2651 . . . . . . . . 9 (Scalar‘𝑄) = (Scalar‘𝑄)
133 eqid 2651 . . . . . . . . 9 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
134 eqid 2651 . . . . . . . . 9 (+g‘(Scalar‘𝑄)) = (+g‘(Scalar‘𝑄))
1352, 4, 132, 17, 133, 134lmodvsdir 18935 . . . . . . . 8 ((𝑄 ∈ LMod ∧ ((𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ 𝐿)) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
136108, 116, 121, 131, 135syl13anc 1368 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
137105, 136eqtrd 2685 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
138137mpteq2dva 4777 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
139138oveq2d 6706 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
140 eqid 2651 . . . . 5 (0g𝑄) = (0g𝑄)
141 ringcmn 18627 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
14214, 141syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
143142adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑄 ∈ CMnd)
144 nn0ex 11336 . . . . . 6 0 ∈ V
145144a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ℕ0 ∈ V)
146109anim2i 592 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
147 df-3an 1056 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
148146, 147sylibr 224 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵))
1495, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 20666 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
150148, 149sylan 487 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
151117anim2i 592 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
152 df-3an 1056 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
153151, 152sylibr 224 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵))
1545, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 20666 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
155153, 154sylan 487 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
156 eqidd 2652 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))
157 eqidd 2652 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
1585, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 20665 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
159148, 158syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1605, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 20665 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
161153, 160syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1622, 140, 4, 143, 145, 150, 155, 156, 157, 159, 161gsummptfsadd 18370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
163139, 162eqtrd 2685 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
164 simpll 805 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑁 ∈ Fin)
165 simplr 807 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
1665, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 20649 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑎(+g𝐶)𝑏) ∈ 𝐵) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
167164, 165, 28, 166syl3anc 1366 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
1685, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 20649 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
169164, 165, 95, 168syl3anc 1366 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
1705, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 20649 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
171164, 165, 99, 170syl3anc 1366 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
172169, 171oveq12d 6708 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑇𝑎)(+g𝑄)(𝑇𝑏)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
173163, 167, 1723eqtr4d 2695 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = ((𝑇𝑎)(+g𝑄)(𝑇𝑏)))
1741, 2, 3, 4, 9, 16, 21, 173isghmd 17716 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑓 cof 6937  Fincfn 7997   finSupp cfsupp 8316  0cn0 11330  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  Grpcgrp 17469  .gcmg 17587   GrpHom cghm 17704  CMndccmn 18239  mulGrpcmgp 18535  Ringcrg 18593  LModclmod 18911  var1cv1 19594  Poly1cpl1 19595  coe1cco1 19596   Mat cmat 20261   decompPMat cdecpmat 20615   pMatToMatPoly cpm2mp 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-coe1 19601  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-decpmat 20616  df-pm2mp 20646
This theorem is referenced by:  pm2mpgrpiso  20670  pm2mprhm  20674  pm2mp  20678
  Copyright terms: Public domain W3C validator