![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2mpcoe1 | Structured version Visualization version GIF version |
Description: A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
Ref | Expression |
---|---|
pm2mpval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pm2mpval.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pm2mpval.b | ⊢ 𝐵 = (Base‘𝐶) |
pm2mpval.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
pm2mpval.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
pm2mpval.x | ⊢ 𝑋 = (var1‘𝐴) |
pm2mpval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
pm2mpval.q | ⊢ 𝑄 = (Poly1‘𝐴) |
pm2mpval.t | ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
Ref | Expression |
---|---|
pm2mpcoe1 | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑇‘𝑀))‘𝐾) = (𝑀 decompPMat 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 750 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → 𝑁 ∈ Fin) | |
2 | simplr 752 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → 𝑅 ∈ Ring) | |
3 | simprl 754 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → 𝑀 ∈ 𝐵) | |
4 | pm2mpval.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | pm2mpval.c | . . . . . 6 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
6 | pm2mpval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
7 | pm2mpval.m | . . . . . 6 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
8 | pm2mpval.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
9 | pm2mpval.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝐴) | |
10 | pm2mpval.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
11 | pm2mpval.q | . . . . . 6 ⊢ 𝑄 = (Poly1‘𝐴) | |
12 | pm2mpval.t | . . . . . 6 ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | pm2mpfval 20821 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
14 | 1, 2, 3, 13 | syl3anc 1476 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
15 | 14 | fveq2d 6336 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → (coe1‘(𝑇‘𝑀)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
16 | 15 | fveq1d 6334 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑇‘𝑀))‘𝐾) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝐾)) |
17 | eqid 2771 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
18 | 10 | matring 20466 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
19 | 18 | adantr 466 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → 𝐴 ∈ Ring) |
20 | eqid 2771 | . . 3 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
21 | eqid 2771 | . . 3 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
22 | 2 | adantr 466 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
23 | 3 | adantr 466 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
24 | simpr 471 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
25 | 4, 5, 6, 10, 20 | decpmatcl 20792 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴)) |
26 | 22, 23, 24, 25 | syl3anc 1476 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴)) |
27 | 26 | ralrimiva 3115 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ∀𝑘 ∈ ℕ0 (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴)) |
28 | 4, 5, 6, 10, 21 | decpmatfsupp 20794 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g‘𝐴)) |
29 | 28 | ad2ant2lr 742 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g‘𝐴)) |
30 | simpr 471 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
31 | 30 | adantl 467 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → 𝐾 ∈ ℕ0) |
32 | 11, 17, 9, 8, 19, 20, 7, 21, 27, 29, 31 | gsummoncoe1 19889 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝐾) = ⦋𝐾 / 𝑘⦌(𝑀 decompPMat 𝑘)) |
33 | csbov2g 6836 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → ⦋𝐾 / 𝑘⦌(𝑀 decompPMat 𝑘) = (𝑀 decompPMat ⦋𝐾 / 𝑘⦌𝑘)) | |
34 | csbvarg 4147 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → ⦋𝐾 / 𝑘⦌𝑘 = 𝐾) | |
35 | 34 | oveq2d 6809 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (𝑀 decompPMat ⦋𝐾 / 𝑘⦌𝑘) = (𝑀 decompPMat 𝐾)) |
36 | 33, 35 | eqtrd 2805 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → ⦋𝐾 / 𝑘⦌(𝑀 decompPMat 𝑘) = (𝑀 decompPMat 𝐾)) |
37 | 36 | adantl 467 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → ⦋𝐾 / 𝑘⦌(𝑀 decompPMat 𝑘) = (𝑀 decompPMat 𝐾)) |
38 | 37 | adantl 467 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ⦋𝐾 / 𝑘⦌(𝑀 decompPMat 𝑘) = (𝑀 decompPMat 𝐾)) |
39 | 16, 32, 38 | 3eqtrd 2809 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑇‘𝑀))‘𝐾) = (𝑀 decompPMat 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⦋csb 3682 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 finSupp cfsupp 8431 ℕ0cn0 11494 Basecbs 16064 ·𝑠 cvsca 16153 0gc0g 16308 Σg cgsu 16309 .gcmg 17748 mulGrpcmgp 18697 Ringcrg 18755 var1cv1 19761 Poly1cpl1 19762 coe1cco1 19763 Mat cmat 20430 decompPMat cdecpmat 20787 pMatToMatPoly cpm2mp 20817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-ofr 7045 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-sup 8504 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-hom 16174 df-cco 16175 df-0g 16310 df-gsum 16311 df-prds 16316 df-pws 16318 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-ghm 17866 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-subrg 18988 df-lmod 19075 df-lss 19143 df-sra 19387 df-rgmod 19388 df-psr 19571 df-mvr 19572 df-mpl 19573 df-opsr 19575 df-psr1 19765 df-vr1 19766 df-ply1 19767 df-coe1 19768 df-dsmm 20293 df-frlm 20308 df-mamu 20407 df-mat 20431 df-decpmat 20788 df-pm2mp 20818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |