MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.86i Structured version   Visualization version   GIF version

Theorem pm2.86i 109
Description: Inference associated with pm2.86 108. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
Hypothesis
Ref Expression
pm2.86i.1 ((𝜑𝜓) → (𝜑𝜒))
Assertion
Ref Expression
pm2.86i (𝜑 → (𝜓𝜒))

Proof of Theorem pm2.86i
StepHypRef Expression
1 pm2.86i.1 . 2 ((𝜑𝜓) → (𝜑𝜒))
2 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
31, 2syl11 33 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  cbv1  2266  bj-cbv1v  32424  stoweidlem17  39571
  Copyright terms: Public domain W3C validator