MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.83 Structured version   Visualization version   GIF version

Theorem pm2.83 84
Description: Theorem *2.83 of [WhiteheadRussell] p. 108. Closed form of syld 47. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.83 ((𝜑 → (𝜓𝜒)) → ((𝜑 → (𝜒𝜃)) → (𝜑 → (𝜓𝜃))))

Proof of Theorem pm2.83
StepHypRef Expression
1 imim1 83 . 2 ((𝜓𝜒) → ((𝜒𝜃) → (𝜓𝜃)))
21imim3i 64 1 ((𝜑 → (𝜓𝜒)) → ((𝜑 → (𝜒𝜃)) → (𝜑 → (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  rexrsb  41667
  Copyright terms: Public domain W3C validator