![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibr 236 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 450 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3015 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ne 2933 |
This theorem is referenced by: pwdom 8277 cantnfle 8741 cantnflem1 8759 cantnf 8763 cdalepw 9210 infmap2 9232 zornn0g 9519 ttukeylem6 9528 msqge0 10741 xrsupsslem 12330 xrinfmsslem 12331 fzoss1 12689 swrdcl 13618 abs1m 14274 fsumcvg3 14659 bezoutlem4 15461 gcdmultiplez 15472 dvdssq 15482 lcmid 15524 pcdvdsb 15775 pcgcd1 15783 pc2dvds 15785 pcaddlem 15794 qexpz 15807 4sqlem19 15869 prmlem1a 16015 gsumwsubmcl 17576 gsumccat 17579 gsumwmhm 17583 zringlpir 20039 mretopd 21098 ufildom1 21931 alexsublem 22049 nmolb2d 22723 nmoi 22733 nmoix 22734 ipcau2 23233 mdegcl 24028 ply1divex 24095 ig1pcl 24134 dgrmulc 24226 mulcxplem 24629 vmacl 25043 efvmacl 25045 vmalelog 25129 padicabv 25518 nmlnoubi 27960 nmblolbii 27963 blocnilem 27968 blocni 27969 ubthlem1 28035 nmbdoplbi 29192 cnlnadjlem7 29241 branmfn 29273 pjbdlni 29317 shatomistici 29529 segcon2 32518 lssats 34802 ps-1 35266 3atlem5 35276 lplnnle2at 35330 2llnm3N 35358 lvolnle3at 35371 4atex2 35866 cdlemd5 35992 cdleme21k 36128 cdlemg33b 36497 mapdrvallem2 37436 mapdhcl 37518 hdmapval3N 37632 hdmap10 37634 hdmaprnlem17N 37657 hdmap14lem2a 37661 hdmaplkr 37707 hgmapvv 37720 cntzsdrg 38274 pfxcl 41896 |
Copyright terms: Public domain | W3C validator |