![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ine | Structured version Visualization version GIF version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
pm2.61ine.2 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
pm2.61ine | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
2 | nne 2827 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | pm2.61ine.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 207 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 → 𝜑) |
5 | 1, 4 | pm2.61i 176 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2824 |
This theorem is referenced by: pm2.61ne 2908 pm2.61iine 2913 rgenzOLD 4110 raaan 4115 iinrab2 4615 iinvdif 4624 riinrab 4628 reusv2lem2 4899 reusv2lem2OLD 4900 xpriindi 5291 dmxpid 5377 dmxpss 5600 rnxpid 5602 cnvpo 5711 xpcoid 5714 fnprb 6513 fntpb 6514 xpexr 7148 frxp 7332 suppimacnv 7351 fodomr 8152 wdompwdom 8524 en3lp 8551 inf3lemd 8562 prdom2 8867 iunfictbso 8975 infpssrlem4 9166 1re 10077 dedekindle 10239 00id 10249 nn0lt2 11478 nn01to3 11819 ioorebas 12313 fzfi 12811 ssnn0fi 12824 hash2prde 13290 repswsymballbi 13573 cshw0 13586 cshwmodn 13587 cshwsublen 13588 cshwn 13589 cshwlen 13591 cshwidx0 13598 dmtrclfv 13803 cncongr2 15429 cshwsidrepswmod0 15848 cshwshashlem1 15849 cshwshashlem2 15850 cshwsdisj 15852 cntzssv 17807 psgnunilem4 17963 mulmarep1gsum2 20428 plyssc 24001 axsegcon 25852 axpaschlem 25865 axlowdimlem16 25882 axcontlem7 25895 axcontlem8 25896 axcontlem12 25900 umgrislfupgrlem 26062 edglnl 26083 uhgr2edg 26145 1egrvtxdg0 26463 uspgrn2crct 26756 2pthon3v 26908 clwwlknon0 27068 1pthon2v 27131 1to3vfriswmgr 27260 frgrnbnb 27273 numclwwlk5 27375 siii 27836 h1de2ctlem 28542 riesz3i 29049 unierri 29091 dya2iocuni 30473 sibf0 30524 bnj1143 30987 bnj571 31102 bnj594 31108 bnj852 31117 dfpo2 31771 noresle 31971 cgrextend 32240 ifscgr 32276 idinside 32316 btwnconn1lem12 32330 btwnconn1 32333 linethru 32385 bj-xpnzex 33071 ovoliunnfl 33581 voliunnfl 33583 volsupnfl 33584 sdrgacs 38088 ax6e2ndeq 39092 lighneal 41853 nrhmzr 42198 zlmodzxznm 42611 |
Copyright terms: Public domain | W3C validator |