MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61ii Structured version   Visualization version   GIF version

Theorem pm2.61ii 177
Description: Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Hypotheses
Ref Expression
pm2.61ii.1 𝜑 → (¬ 𝜓𝜒))
pm2.61ii.2 (𝜑𝜒)
pm2.61ii.3 (𝜓𝜒)
Assertion
Ref Expression
pm2.61ii 𝜒

Proof of Theorem pm2.61ii
StepHypRef Expression
1 pm2.61ii.2 . 2 (𝜑𝜒)
2 pm2.61ii.1 . . 3 𝜑 → (¬ 𝜓𝜒))
3 pm2.61ii.3 . . 3 (𝜓𝜒)
42, 3pm2.61d2 173 . 2 𝜑𝜒)
51, 4pm2.61i 176 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.61iii  179  hbae  2467  pssnn  8334  alephadd  9601  axextnd  9615  axunnd  9620  axpownd  9625  axregndlem2  9627  axregnd  9628  axinfndlem1  9629  axinfnd  9630  2cshwcshw  13780  ressress  16146  frgrreg  27593  bj-hbaeb2  33140  hbae-o  34711  hbequid  34717  ax5eq  34740  ax5el  34745  odd2prm2  42155
  Copyright terms: Public domain W3C validator