![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61da2ne | Structured version Visualization version GIF version |
Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.) |
Ref | Expression |
---|---|
pm2.61da2ne.1 | ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) |
pm2.61da2ne.2 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) |
pm2.61da2ne.3 | ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) |
Ref | Expression |
---|---|
pm2.61da2ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61da2ne.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝜓) | |
2 | pm2.61da2ne.2 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝜓) | |
3 | 2 | adantlr 694 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 = 𝐷) → 𝜓) |
4 | pm2.61da2ne.3 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷)) → 𝜓) | |
5 | 4 | anassrs 458 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ≠ 𝐷) → 𝜓) |
6 | 3, 5 | pm2.61dane 3030 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
7 | 1, 6 | pm2.61dane 3030 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ne 2944 |
This theorem is referenced by: pm2.61da3ne 3032 isabvd 19030 xrsxmet 22832 chordthmlem3 24782 mumul 25128 lgsdirnn0 25290 lgsdinn0 25291 lfl1dim 34930 lfl1dim2N 34931 pmodlem2 35655 cdlemg29 36514 cdlemg39 36525 cdlemg44b 36541 dia2dimlem9 36882 dihprrn 37236 dvh3dim 37256 lcfl9a 37315 lclkrlem2l 37328 lcfrlem42 37394 mapdh6kN 37556 hdmap1l6k 37630 |
Copyright terms: Public domain | W3C validator |