![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 3imp3i2anOLD 1300 2eu1 2582 rspcebdv 3345 elpwunsn 4256 trel 4792 trssOLD 4795 preddowncl 5745 predpoirr 5746 predfrirr 5747 funfvima 6532 ordsucss 7060 ac10ct 8895 ltaprlem 9904 infrelb 11046 nnmulcl 11081 ico0 12259 ioc0 12260 clwlksfoclwwlk 27050 n4cyclfrgr 27271 chlimi 28219 atcvatlem 29372 eel12131 39255 lidldomn1 42246 |
Copyright terms: Public domain | W3C validator |