![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 121. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 139 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5 164 asymref2 5548 xpexr 7148 bropopvvv 7300 bropfvvvv 7302 reldmtpos 7405 zeo 11501 rpneg 11901 xrlttri 12010 difreicc 12342 nn0o1gt2 15144 cshwshashlem1 15849 gsumbagdiag 19424 psrass1lem 19425 gsumcom3fi 20254 cfinufil 21779 sizusglecusg 26415 iswspthsnon 26806 clwlkclwwlklem2a4 26963 frgrncvvdeqlem8 27286 chirredi 29381 gsummpt2co 29908 truae 30434 bj-sngltag 33096 itg2addnclem 33591 itg2addnclem3 33593 cdleme32e 36050 ntrneiiso 38706 tz6.12-afv 41574 odz2prm2pw 41800 lighneallem3 41849 lighneallem4b 41851 lindslinindsimp2lem5 42576 nnolog2flm1 42709 |
Copyright terms: Public domain | W3C validator |