![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24 | Structured version Visualization version GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 146. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 120 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm4.81 380 orc 399 pm2.82 915 dedlema 1014 cases2ALT 1017 eqneqall 2834 elnelall 2939 ordnbtwn 5854 suppimacnv 7351 ressuppss 7359 ressuppssdif 7361 infssuni 8298 axpowndlem1 9457 ltlen 10176 znnn0nn 11527 elfzonlteqm1 12583 injresinjlem 12628 addmodlteq 12785 ssnn0fi 12824 hasheqf1oi 13180 hashfzp1 13256 swrdnd2 13479 swrdccat3blem 13541 repswswrd 13577 dvdsaddre2b 15076 dfgcd2 15310 prm23ge5 15567 oddprmdvds 15654 mdegle0 23882 2lgsoddprm 25186 nb3grprlem1 26326 4cyclusnfrgr 27272 broutsideof2 32354 meran1 32535 bj-andnotim 32698 contrd 34029 pell1qrgaplem 37754 clsk1indlem3 38658 pm2.43cbi 39041 zeo2ALTV 41907 ztprmneprm 42450 |
Copyright terms: Public domain | W3C validator |